Notas Ditadas a G.E. Moore na Noruega: Difference between revisions

no edit summary
No edit summary
No edit summary
Line 67: Line 67:
''Agora'', veremos como analisar corretamente as proposições em que “coisa”, “relação”, etc., ocorrem.
''Agora'', veremos como analisar corretamente as proposições em que “coisa”, “relação”, etc., ocorrem.


(1) Considere 𝜙x. Nós queremos explicar o significado de ‘Em “𝜙x” uma ''coisa'' [se] simboliza’. A análise é:一
(1) Considere 𝜙x. Nós queremos explicar o significado de ‘Em “𝜙x” uma ''coisa'' [se] simboliza’. A análise é:一


(∃y) . y simboliza . y = “x” . “𝜙x”
(∃y) . y simboliza . y = “x” . “𝜙x”
Line 89: Line 89:
Se você tivesse qualquer proposição não analisável na qual ocorressem nomes e relações particulares (e proposição ''não analisável'' = uma na qual apenas símbolos fundamentais = aqueles que não são sujeitos a ''definição,'' ocorrem) então você pode sempre formar dela uma proposição da forma (∃x, y, R). xRy, que embora não contenha nenhum nome e relação particulares, é não analisável.
Se você tivesse qualquer proposição não analisável na qual ocorressem nomes e relações particulares (e proposição ''não analisável'' = uma na qual apenas símbolos fundamentais = aqueles que não são sujeitos a ''definição,'' ocorrem) então você pode sempre formar dela uma proposição da forma (∃x, y, R). xRy, que embora não contenha nenhum nome e relação particulares, é não analisável.


(2) O ponto pode ser abordado como se segue. Pegue 𝜙a e 𝜙A: e pergunte o que se quer dizer com “Tem uma coisa em 𝜙a, e uma complexa em 𝜙A”?
(2) O ponto pode ser abordado como se segue. Pegue 𝜙a e 𝜙A: e pergunte o que se quer dizer com “Tem uma coisa em 𝜙a, e uma complexa em 𝜙A”?


{{p indent|(1) quer dizer: (∃x) . 𝜙x . x = a}}
{{p indent|(1) quer dizer: (∃x) . 𝜙x . x = a}}


{{p indent|(2) quer dizer: (∃x, 𝜓) . 𝜙A = 𝜓x . 𝜙x<ref>𝜉 é a marca de Frege de um ''Argumentstelle'' [posição do argumento], para mostrar que 𝜓 é uma ''Funktionsbuchstabe'' [letra de função] [Edd.].</ref>}}
{{p indent|(2) quer dizer: (∃x, 𝜓) . 𝜙A = 𝜓x . 𝜙x<ref>𝜉 é a marca de Frege de um ''Argumentstelle'' [posição do argumento], para mostrar que 𝜓 é uma ''Funktionsbuchstabe'' [letra de função] [Edd.].</ref>}}


''Uso de proposições lógicas''. Você pode ter uma tão complicada que você não consegue, ao olhar para ela, ver que é uma tautologia; mas você mostrou que pode ser derivada por determinas operações a partir de certas outras proposições de acordo com nossa regra para construir tautologias; e assim você está habilitado para ver que uma coisa se segue da outra, quando você não seria capaz de ver isso de outro modo. E.g., se nossa tautologia é d[a] forma p ⊃ q você pode ver que p se segue de p; e assim por diante.
''Uso de proposições lógicas''. Você pode ter uma tão complicada que você não consegue, ao olhar para ela, ver que é uma tautologia; mas você mostrou que pode ser derivada por determinas operações a partir de certas outras proposições de acordo com nossa regra para construir tautologias; e assim você está habilitado para ver que uma coisa se segue da outra, quando você não seria capaz de ver isso de outro modo. E.g., se nossa tautologia é d[a] forma p ⊃ q você pode ver que p se segue de p; e assim por diante.
Line 135: Line 135:
Havendo assim fixado o que é uma tautologia e o que não é, nós podemos então, havendo fixado arbitrariamente de novo que a relação a-b é transitiva, obtida dos dois fatos juntos de que “p ≡ ~(~p)” é uma tautologia. Porque ~(~p) = a-b-a-p-b-a-b. O ponto é: que o processo de raciocínio pelo qual chegamos ao resultado que a-b-a-p-b-a-b é o ''mesmo símbolo'' que a-p-b, é exatamente o mesmo que aquele pelo qual nós descobrimos que seu significado é o mesmo, viz. onde raciocinamos se b-a-p-b-a, então ''não'' a-p-b, se a-b-a-p-b-a-b então ''não'' b-a-p-b-a, portanto se a-b-a-p-b-a-b, então a-p-b.
Havendo assim fixado o que é uma tautologia e o que não é, nós podemos então, havendo fixado arbitrariamente de novo que a relação a-b é transitiva, obtida dos dois fatos juntos de que “p ≡ ~(~p)” é uma tautologia. Porque ~(~p) = a-b-a-p-b-a-b. O ponto é: que o processo de raciocínio pelo qual chegamos ao resultado que a-b-a-p-b-a-b é o ''mesmo símbolo'' que a-p-b, é exatamente o mesmo que aquele pelo qual nós descobrimos que seu significado é o mesmo, viz. onde raciocinamos se b-a-p-b-a, então ''não'' a-p-b, se a-b-a-p-b-a-b então ''não'' b-a-p-b-a, portanto se a-b-a-p-b-a-b, então a-p-b.


Segue-se o fato de que a-b é transitivo que, onde temos a-b-a, o primeiro a tem com o segundo a mesma relação que tem com b. É o mesmo com o fato de que a-verdadeiro implica b-falso, e b-falso implica c-verdadeiro, nós entendemos que a-verdadeiro implica c-verdadeiro. E nós devemos ser capazes de ver que, havendo fixado a descrição de uma tautologia, que p ≡ ~(~p) é uma tautologia.
Segue-se o fato de que a-b é transitivo que, onde temos a-b-a, o primeiro a tem com o segundo a mesma relação que tem com b. É o mesmo com o fato de que a-verdadeiro implica b-falso, e b-falso implica c-verdadeiro, nós entendemos que a-verdadeiro implica c-verdadeiro. E nós devemos ser capazes de ver que, havendo fixado a descrição de uma tautologia, que p ≡ ~(~p) é uma tautologia.


Que, quando certa regra é dada, um símbolo ''mostra'' uma verdade lógica:
Que, quando certa regra é dada, um símbolo ''mostra'' uma verdade lógica:  


Esse símbolo pode ser interpretado como uma tautologia ou uma contradição.
Esse símbolo pode ser interpretado como uma tautologia ou uma contradição.
Line 171: Line 171:
O que simboliza em um símbolo é o que é comum a todos os símbolos que poderiam, de acordo com as regras da lógica = regras sintéticas para manipulação de símbolos, ser substituídos por ela. [Cf. 3.344.]
O que simboliza em um símbolo é o que é comum a todos os símbolos que poderiam, de acordo com as regras da lógica = regras sintéticas para manipulação de símbolos, ser substituídos por ela. [Cf. 3.344.]


A questão sobre se uma proposição tem sentido (Sinn) nunca pode depender da ''verdade'' de outra proposição sobre um constituinte da primeira. E.g., a questão de se (x) x=x tem           significado (Sinn)<ref>Possivelmente “entre as barras verticais (''sheffer-strokes'')”. [Edd.]</ref> não pode depender da questão se (∃x) x=x é ''verdadeiro''. Não descreve a realidade de nenhum modo, e lida unicamente com símbolos; e diz que eles devem ''simbolizar'', mas não ''o que'' eles simbolizam.
A questão sobre se uma proposição tem sentido (Sinn) nunca pode depender da ''verdade'' de outra proposição sobre um constituinte da primeira. E.g., a questão de se (x) x=x tem significado (Sinn)<ref>Possivelmente “entre as barras verticais (''sheffer-strokes'')”. [Edd.]</ref> não pode depender da questão se (∃x) x=x é ''verdadeiro''. Não descreve a realidade de nenhum modo, e lida unicamente com símbolos; e diz que eles devem ''simbolizar'', mas não ''o que'' eles simbolizam.


É óbvio que os pontos e colchetes são símbolos, e óbvio que eles não têm nenhum significado ''independente''. Você deve, portanto, para introduzir as chamadas “constantes lógicas” adequadamente, introduzir a noção geral de ''todas as possíveis'' combinações delas = a forma geral de uma proposição. Você, portanto, introduz ambas ab-funções, identidade e universalidade (as três constantes fundamentais) simultaneamente.
É óbvio que os pontos e colchetes são símbolos, e óbvio que eles não têm nenhum significado ''independente''. Você deve, portanto, para introduzir as chamadas “constantes lógicas” adequadamente, introduzir a noção geral de ''todas as possíveis'' combinações delas = a forma geral de uma proposição. Você, portanto, introduz ambas ab-funções, identidade e universalidade (as três constantes fundamentais) simultaneamente.
Line 179: Line 179:
É muito importante perceber que, quando você tem duas relações diferentes (a,b)R, (c,d)S, isso ''não'' estabelece uma correlação entre a e c, e b e d, ou a e d, e b e c: não existe nenhuma correlação assim estabelecida. É claro, no caso de dois pares de termos unidos pela ''mesma'' relação, existe uma correlação. Isso mostra que a teoria que sustentou que um fato relacional contendo os termos e as relações unidos por uma ''cópula'' (ϵ₂) é uma inverdade; pois, se isso fosse o caso, existiria uma correspondência entre os termos de diferentes relações.
É muito importante perceber que, quando você tem duas relações diferentes (a,b)R, (c,d)S, isso ''não'' estabelece uma correlação entre a e c, e b e d, ou a e d, e b e c: não existe nenhuma correlação assim estabelecida. É claro, no caso de dois pares de termos unidos pela ''mesma'' relação, existe uma correlação. Isso mostra que a teoria que sustentou que um fato relacional contendo os termos e as relações unidos por uma ''cópula'' (ϵ₂) é uma inverdade; pois, se isso fosse o caso, existiria uma correspondência entre os termos de diferentes relações.


A questão surge: como pode uma proposição (ou função) ocorrer em outra proposição? A proposição ou função por si só não pode possivelmente ficar em relação a outros símbolos. Por essa razão nós devemos introduzir funções assim como nomes de uma vez na nossa forma geral de uma proposição; explicando o que se quer dizer, atribuindo significado ao fato de que os nomes ficam entre a ⎸,<ref>No original, “''meaning''” está traduzido por “significado” neste trabalho, e não “''sense''” como o substantivo em alemão “''Sinn''” entre parênteses pode sugerir.</ref> e que a função fica à esquerda dos nomes.
A questão surge: como pode uma proposição (ou função) ocorrer em outra proposição? A proposição ou função por si só não pode possivelmente ficar em relação a outros símbolos. Por essa razão nós devemos introduzir funções assim como nomes de uma vez na nossa forma geral de uma proposição; explicando o que se quer dizer, atribuindo significado ao fato de que os nomes ficam entre a ⎸,<ref>No original, “''meaning''” está traduzido por “significado” neste trabalho, e não “''sense''” como o substantivo em alemão “''Sinn''” entre parênteses pode sugerir.</ref> e que a função fica à esquerda dos nomes.


É verdadeiro, em certo sentido, que proposições lógicas são “postulados” - algo que nós “demandamos”; pois nós demandamos uma notação satisfatória. [Cf. 6.1223.]
É verdadeiro, em certo sentido, que proposições lógicas são “postulados” - algo que nós “demandamos”; pois nós demandamos uma notação satisfatória. [Cf. 6.1223.]