Notas Ditadas a G.E. Moore na Noruega: Difference between revisions

no edit summary
No edit summary
No edit summary
Line 54: Line 54:
Proposições lógicas ''mostram'' algo, ''porque'' a linguagem na qual elas são expressadas pode ''dizer'' tudo o que pode ser ''dito''.
Proposições lógicas ''mostram'' algo, ''porque'' a linguagem na qual elas são expressadas pode ''dizer'' tudo o que pode ser ''dito''.


Essa mesma distinção entre o que pode ser ''expost''o pela linguagem, mas não pode ser ''dito'', explica a dificuldade que se sente sobre os tipos - e.g, assim como [a] diferença entre coisas, fatos, propriedades, relações. Que M é uma ''coisa'' não pode ser dito; não tem sentido: mas algo é exposto pelo símbolo “M”. Do mesmo modo, que uma ''proposição'' é uma proposição de sujeito-predicado, não pode ser dito: mas isso é ''exposto'' pelo símbolo.
Essa mesma distinção entre o que pode ser ''expost''o pela linguagem, mas não pode ser ''dito'', explica a dificuldade que se sente sobre os tipos e.g, assim como [a] diferença entre coisas, fatos, propriedades, relações. Que M é uma ''coisa'' não pode ser dito; não tem sentido: mas algo é exposto pelo símbolo “M”. Do mesmo modo, que uma ''proposição'' é uma proposição de sujeito-predicado, não pode ser dito: mas isso é ''exposto'' pelo símbolo.


Portanto, uma Teoria dos Tipos é impossível. Ela tenta dizer algo sobre os tipos, quando você só pode falar sobre os símbolos. Mas ''o que'' você diz sobre os símbolos não é que esse símbolo tem aquele tipo, que seria sem sentido pela mesma razão: mas você diz simplesmente: ''Esse'' é o símbolo, para prevenir um mal-entendido. E.g., em “aRb”, “R” ''não é'' um símbolo, mas que “R” simboliza que ele está entre um nome e outro. Aqui nós ''não'' dissemos: esse símbolo não é desse tipo mas daquele, mas apenas: isto simboliza {isso} e não aquilo. Isso parece, novamente, cometer o mesmo erro, porque “simboliza” é “tipicamente ambíguo”. A verdadeira análise é: “R” não é um nome próprio e que [quando] “R” fica entre “a” e “b” expressa uma ''relação''. Aqui estão ''duas proposições de tipos diferentes'' conectadas por “e”.
Portanto, uma Teoria dos Tipos é impossível. Ela tenta dizer algo sobre os tipos, quando você só pode falar sobre os símbolos. Mas ''o que'' você diz sobre os símbolos não é que esse símbolo tem aquele tipo, que seria sem sentido pela mesma razão: mas você diz simplesmente: ''Esse'' é o símbolo, para prevenir um mal-entendido. E.g., em “aRb”, “R” ''não é'' um símbolo, mas que “R” simboliza que ele está entre um nome e outro. Aqui nós ''não'' dissemos: esse símbolo não é desse tipo mas daquele, mas apenas: isto simboliza {isso} e não aquilo. Isso parece, novamente, cometer o mesmo erro, porque “simboliza” é “tipicamente ambíguo”. A verdadeira análise é: “R” não é um nome próprio e que [quando] “R” fica entre “a” e “b” expressa uma ''relação''. Aqui estão ''duas proposições de tipos diferentes'' conectadas por “e”.
Line 66: Line 66:
''Agora'', veremos como analisar corretamente as proposições em que “coisa”, “relação”, etc., ocorrem.
''Agora'', veremos como analisar corretamente as proposições em que “coisa”, “relação”, etc., ocorrem.


(1) Considere ϕx. Nós queremos explicar o significado de ‘Em “ϕx” uma ''coisa'' [se] simboliza’. A análise é:
(1) Considere ϕx. Nós queremos explicar o significado de ‘Em “ϕx” uma ''coisa'' [se] simboliza’. A análise é:


{{p indent|(∃y) . y simboliza . y <nowiki>=</nowiki> “x” . “ϕx”}}
{{p indent|(∃y) . y simboliza . y <nowiki>=</nowiki> “x” . “ϕx”}}
Line 80: Line 80:
Na nossa linguagem, nomes ''não'' são ''coisas'': nós não sabemos o que eles são: tudo o que nós sabemos é que eles são de um tipo diferente das relações, etc. etc. O tipo de um símbolo de uma relação é parcialmente fixado [pelo] tipo de [um] símbolo de [uma] coisa, já que o símbolo [do] último tipo deve ocorrer.
Na nossa linguagem, nomes ''não'' são ''coisas'': nós não sabemos o que eles são: tudo o que nós sabemos é que eles são de um tipo diferente das relações, etc. etc. O tipo de um símbolo de uma relação é parcialmente fixado [pelo] tipo de [um] símbolo de [uma] coisa, já que o símbolo [do] último tipo deve ocorrer.


N. B. Em qualquer proposição ordinária, e.g., “Moore bom”, isso mostra e não diz que “''Moore''” está à esquerda de “bom”; e ''aqui o que'' é exposto pode ser ''dito'' por outra proposição. Mas isso só se aplica para aquela ''parte'' do que está sendo exposto que é arbitrária. As propriedades ''lógicas'' que ela mostra não são arbitrárias, e que ela as tem não pode ser dito em nenhuma proposição.
N.B. Em qualquer proposição ordinária, e.g., “Moore bom”, isso mostra e não diz que “''Moore''” está à esquerda de “bom”; e ''aqui o que'' é exposto pode ser ''dito'' por outra proposição. Mas isso só se aplica para aquela ''parte'' do que está sendo exposto que é arbitrária. As propriedades ''lógicas'' que ela mostra não são arbitrárias, e que ela as tem não pode ser dito em nenhuma proposição.


Quando nós falamos uma proposição d[a] forma “aRb” que o que ela simboliza é que “R” está entre “a” e “b”, é preciso ser lembrado que na verdade a proposição é capaz de uma análise mais aprofundada pois a, R, e b não são ''simples''. Mas o que parece certo é que quando a tivermos analisado, nós devemos, ao final, chegar em proposições da mesma forma a respeito do fato que elas consistem em uma coisa estando entre duas outras.
Quando nós falamos uma proposição d[a] forma “aRb” que o que ela simboliza é que “R” está entre “a” e “b”, é preciso ser lembrado que na verdade a proposição é capaz de uma análise mais aprofundada pois a, R, e b não são ''simples''. Mas o que parece certo é que quando a tivermos analisado, nós devemos, ao final, chegar em proposições da mesma forma a respeito do fato que elas consistem em uma coisa estando entre duas outras.
Line 92: Line 92:
{{p indent|(1) quer dizer: (∃x) . ϕx . x <nowiki>=</nowiki> a}}
{{p indent|(1) quer dizer: (∃x) . ϕx . x <nowiki>=</nowiki> a}}


{{p indent|(2) quer dizer: (∃x, ψξ) . ϕA <nowiki>=</nowiki> ψx . ϕx<ref>ξ é a marca de Frege de um ''Argumentstelle'' [posição do argumento], para mostrar que ψ é uma ''Funktionsbuchstabe'' [letra de função] [Edd.].</ref>}}
{{p indent|(2) quer dizer: (∃x, ψξ) . ϕA <nowiki>=</nowiki> ψx . ϕx.<ref>ξ é a marca de Frege de um ''Argumentstelle'' [posição do argumento], para mostrar que ψ é uma ''Funktionsbuchstabe'' [letra de função] [Edd.].</ref>}}


''Uso de proposições lógicas''. Você pode ter uma tão complicada que você não consegue, ao olhar para ela, ver que é uma tautologia; mas você mostrou que pode ser derivada por determinas operações a partir de certas outras proposições de acordo com nossa regra para construir tautologias; e assim você está habilitado para ver que uma coisa se segue da outra, quando você não seria capaz de ver isso de outro modo. E.g., se nossa tautologia é d[a] forma p ⊃ q você pode ver que p se segue de p; e assim por diante.
''Uso de proposições lógicas''. Você pode ter uma tão complicada que você não consegue, ao olhar para ela, ver que é uma tautologia; mas você mostrou que pode ser derivada por determinas operações a partir de certas outras proposições de acordo com nossa regra para construir tautologias; e assim você está habilitado para ver que uma coisa se segue da outra, quando você não seria capaz de ver isso de outro modo. E.g., se nossa tautologia é d[a] forma p ⊃ q você pode ver que p se segue de p; e assim por diante.
Line 136: Line 136:
Segue-se o fato de que a-b é transitivo que, onde temos a-b-a, o primeiro a tem com o segundo a mesma relação que tem com b. É o mesmo com o fato de que a-verdadeiro implica b-falso, e b-falso implica c-verdadeiro, nós entendemos que a-verdadeiro implica c-verdadeiro. E nós devemos ser capazes de ver que, havendo fixado a descrição de uma tautologia, que p ≡ ~(~p) é uma tautologia.
Segue-se o fato de que a-b é transitivo que, onde temos a-b-a, o primeiro a tem com o segundo a mesma relação que tem com b. É o mesmo com o fato de que a-verdadeiro implica b-falso, e b-falso implica c-verdadeiro, nós entendemos que a-verdadeiro implica c-verdadeiro. E nós devemos ser capazes de ver que, havendo fixado a descrição de uma tautologia, que p ≡ ~(~p) é uma tautologia.


Que, quando certa regra é dada, um símbolo ''mostra'' uma verdade lógica:
Que, quando certa regra é dada, um símbolo ''mostra'' uma verdade lógica.


[[File:Notes Dictated to G.E. Moore in Norway schema corrected.png|300px|center|link=]]
[[File:Notes Dictated to G.E. Moore in Norway schema corrected.png|300px|center|link=]]
Line 148: Line 148:
O símbolo para uma tautologia, de qualquer forma que colocamos, e.g., quer omitindo o polo a ou omitindo o b, seria sempre capaz de ser usado como o símbolo para uma contradição; apenas não na mesma linguagem.
O símbolo para uma tautologia, de qualquer forma que colocamos, e.g., quer omitindo o polo a ou omitindo o b, seria sempre capaz de ser usado como o símbolo para uma contradição; apenas não na mesma linguagem.


A razão pela qual ~x é sem significado é simplesmente que nós demos nenhum sentido para o símbolo ~. I.e. enquanto ϕx e ϕp parecem ser do mesmo tipo, eles não são porque, para dar um significado para ~x, você deveria ter alguma ''propriedade'' ~. O que simboliza em ϕ é ''que'' ϕ está à esquerda de ''um'' nome próprio e obviamente isso não é assim em ~p. O que é comum a todas proposições em que o nome de uma propriedade (para falar frouxamente) ocorre é que esse nome está à esquerda de uma ''forma-nome.''
A razão pela qual ~x é sem significado é simplesmente que nós demos nenhum sentido para o símbolo ~ξ. I.e. enquanto ϕx e ϕp parecem ser do mesmo tipo, eles não são porque, para dar um significado para ~x, você deveria ter alguma ''propriedade'' ~ξ. O que simboliza em ϕξ é ''que'' ϕ está à esquerda de ''um'' nome próprio e obviamente isso não é assim em ~p. O que é comum a todas proposições em que o nome de uma propriedade (para falar frouxamente) ocorre é que esse nome está à esquerda de uma ''forma-nome.''


A razão pela qual, e.g., parece que “Platão Sócrates” pode ter significado, enquanto “Abracadabra Sócrates” nunca vai ser suspeito de ter um, é porque nós sabemos que “Platão” tem um e não observamos que, para que a frase inteira devesse ter um, o que é necessário ''não'' é que “Platão” devesse ter um, mas que o fato de ''que'' “Platão estar à esquerda de um ''nome'' deve”.
A razão pela qual, e.g., parece que “Platão Sócrates” pode ter significado, enquanto “Abracadabra Sócrates” nunca vai ser suspeito de ter um, é porque nós sabemos que “Platão” tem um e não observamos que, para que a frase inteira devesse ter um, o que é necessário ''não'' é que “Platão” devesse ter um, mas que o fato de ''que'' “Platão estar à esquerda de um ''nome'' deve”.
Line 158: Line 158:
{{p indent|p é falso <nowiki>=</nowiki> ~(p é verdadeiro) Def.}}
{{p indent|p é falso <nowiki>=</nowiki> ~(p é verdadeiro) Def.}}


É muito importante que as aparentes relações lógicas v, ⊃, etc. precisem de colchetes, pontos, etc., i.e. ter “gamas”; que por si só mostra que eles não são relações. Esse fato tem sido menosprezado, porque é muito universal -a coisa mesma que deixa isso importante. [Cf. 5.461.]
É muito importante que as aparentes relações lógicas v, ⊃, etc. precisem de colchetes, pontos, etc., i.e. ter “gamas”; que por si só mostra que eles não são relações. Esse fato tem sido menosprezado, porque é muito universal a coisa mesma que deixa isso importante. [Cf. 5.461.]


Existem relações ''internas'' entre uma proposição e outra; mas uma proposição não pode ter com outra ''a'' relação interna que um ''nome'' tem com a proposição da qual seja constituinte e que deveria significar ao dizer que “ocorre” nela. Nesse sentido, uma proposição não pode “ocorrer” em outra.
Existem relações ''internas'' entre uma proposição e outra; mas uma proposição não pode ter com outra ''a'' relação interna que um ''nome'' tem com a proposição da qual seja constituinte e que deveria significar ao dizer que “ocorre” nela. Nesse sentido, uma proposição não pode “ocorrer” em outra.
Line 164: Line 164:
Relações ''internas'' são relações entre tipos, que não podem ser expressadas em proposições, mas estão todas à mostra nos símbolos em si mesmos e podem ser exibidas sistematicamente em tautologias. Por que nós a chamamos de “relações” é porque proposições lógicas têm uma relação análoga a elas, para a qual proposições propriamente relacionais têm com relações.
Relações ''internas'' são relações entre tipos, que não podem ser expressadas em proposições, mas estão todas à mostra nos símbolos em si mesmos e podem ser exibidas sistematicamente em tautologias. Por que nós a chamamos de “relações” é porque proposições lógicas têm uma relação análoga a elas, para a qual proposições propriamente relacionais têm com relações.


Proposições podem ter muitas relações internas diferentes umas com as outras. ''A'' única que nos autoriza deduzir uma da outra é se, digamos, elas são ϕa e ϕa ⊃ ψa, então ϕa.ϕa ⊃ ψa: ⊃ : ψa é uma tautologia.
Proposições podem ter muitas relações internas diferentes umas com as outras. ''A'' única que nos autoriza deduzir uma da outra é se, digamos, elas são ϕa e ϕa ⊃ ψa, então ϕa . ϕa ⊃ ψa : ⊃ : ψa é uma tautologia.


O símbolo de identidade expressa uma relação interna entre a função e o seu argumento: i.e. ϕa = (∃x) . ϕx.x = a.
O símbolo de identidade expressa uma relação interna entre a função e o seu argumento: i.e. ϕa = (∃x) . ϕx.x = a.
Line 182: Line 182:
A questão surge: como pode uma proposição (ou função) ocorrer em outra proposição? A proposição ou função por si só não pode possivelmente ficar em relação a outros símbolos. Por essa razão nós devemos introduzir funções assim como nomes de uma vez na nossa forma geral de uma proposição; explicando o que se quer dizer, atribuindo significado ao fato de que os nomes ficam entre a |,<ref>No original, “''meaning''” está traduzido por “significado” neste trabalho, e não “''sense''” como o substantivo em alemão “''Sinn''” entre parênteses pode sugerir.</ref> e que a função fica à esquerda dos nomes.
A questão surge: como pode uma proposição (ou função) ocorrer em outra proposição? A proposição ou função por si só não pode possivelmente ficar em relação a outros símbolos. Por essa razão nós devemos introduzir funções assim como nomes de uma vez na nossa forma geral de uma proposição; explicando o que se quer dizer, atribuindo significado ao fato de que os nomes ficam entre a |,<ref>No original, “''meaning''” está traduzido por “significado” neste trabalho, e não “''sense''” como o substantivo em alemão “''Sinn''” entre parênteses pode sugerir.</ref> e que a função fica à esquerda dos nomes.


É verdadeiro, em certo sentido, que proposições lógicas são “postulados” - algo que nós “demandamos”; pois nós demandamos uma notação satisfatória. [Cf. 6.1223.]
É verdadeiro, em certo sentido, que proposições lógicas são “postulados” algo que nós “demandamos”; pois nós demandamos uma notação satisfatória. [Cf. 6.1223.]


Uma tautologia (''não'' uma proposição lógica), não é sem sentido da mesma forma em que, e.g., uma proposição na qual palavras que não têm significado ocorrem. O que acontece nela é que todas as suas partes simples têm significado, mas as conexões entre essas paralisam ou destroem umas às outras, de modo que elas todas estão conectadas somente numa maneira irrelevante.
Uma tautologia (''não'' uma proposição lógica), não é sem sentido da mesma forma em que, e.g., uma proposição na qual palavras que não têm significado ocorrem. O que acontece nela é que todas as suas partes simples têm significado, mas as conexões entre essas paralisam ou destroem umas às outras, de modo que elas todas estão conectadas somente numa maneira irrelevante.