Logisch-philosophische Abhandlung: Difference between revisions

no edit summary
No edit summary
No edit summary
Line 326: Line 326:
{{ParTLPde|3.22}} Der Name vertritt im Satz den Gegenstand.
{{ParTLPde|3.22}} Der Name vertritt im Satz den Gegenstand.


{{ParTLPde|3.221}} Die Gegenstände kann ich nur {{spaced text|nennen}}. Zeichen vertreten sie. Ich kann nur {{spaced text|von}} ihnen sprechen, {{spaced text|sie}}  {{spaced text|aussprechen}} kann ich nicht. Ein Satz kann nur sagen, {{spaced text|wie}} ein Ding ist, nicht {{spaced text|was}} es ist.
{{ParTLPde|3.221}} Die Gegenstände kann ich nur {{spaced text|nennen}}. Zeichen vertreten sie. Ich kann nur {{spaced text|von}} ihnen sprechen, {{spaced text|sie aussprechen}} kann ich nicht. Ein Satz kann nur sagen, {{spaced text|wie}} ein Ding ist, nicht {{spaced text|was}} es ist.


{{ParTLPde|3.23}} Die Forderung der Möglichkeit der einfachen Zeichen ist die Forderung der Bestimmtheit des Sinnes.
{{ParTLPde|3.23}} Die Forderung der Möglichkeit der einfachen Zeichen ist die Forderung der Bestimmtheit des Sinnes.
Line 384: Line 384:
Die Festsetzung der Werte {{spaced text|ist}} die Variable.
Die Festsetzung der Werte {{spaced text|ist}} die Variable.


{{ParTLPde|3.317}} Die Festsetzung der Werte der Satzvariablen ist die {{spaced text|Angabe}}  {{spaced text|der}}  {{spaced text|Sätze}}, deren gemeinsames Merkmal die Variable ist.
{{ParTLPde|3.317}} Die Festsetzung der Werte der Satzvariablen ist die {{spaced text|Angabe der Sätze}}, deren gemeinsames Merkmal die Variable ist.


Die Festsetzung ist eine Beschreibung dieser Sätze.
Die Festsetzung ist eine Beschreibung dieser Sätze.
Line 390: Line 390:
Die Festsetzung wird also nur von Symbolen, nicht von deren Bedeutung handeln.
Die Festsetzung wird also nur von Symbolen, nicht von deren Bedeutung handeln.


Und {{spaced text|nur}} dies ist der Festsetzung wesentlich, {{spaced text|dass}}  {{spaced text|sie}}  {{spaced text|nur}}  {{spaced text|eine}}  {{spaced text|Beschreibung}}  {{spaced text|von}}  {{spaced text|Symbolen}}  {{spaced text|ist}}  {{spaced text|und}}  {{spaced text|nichts}}  {{spaced text|über}}  {{spaced text|das}}  {{spaced text|Bezeichnete}}  {{spaced text|aussagt}}.
Und {{spaced text|nur}} dies ist der Festsetzung wesentlich, {{spaced text|dass sie nur eine Beschreibung von Symbolen ist und nichts über das Bezeichnete aussagt}}.


Wie die Beschreibung der Sätze geschieht, ist unwesentlich.
Wie die Beschreibung der Sätze geschieht, ist unwesentlich.
Line 406: Line 406:
So erscheint das Wort „ist“ als Kopula, als Gleichheitszeichen und als Ausdruck der Existenz; „existieren“ als intransitives Zeitwort wie „gehen“; „identisch“ als Eigenschaftswort; wir reden von {{spaced text|Etwas}}, aber auch davon, dass {{spaced text|etwas}} geschieht.
So erscheint das Wort „ist“ als Kopula, als Gleichheitszeichen und als Ausdruck der Existenz; „existieren“ als intransitives Zeitwort wie „gehen“; „identisch“ als Eigenschaftswort; wir reden von {{spaced text|Etwas}}, aber auch davon, dass {{spaced text|etwas}} geschieht.


(Im Satze „Grün ist grün“ – wo das erste Wort ein Personenname, das letzte ein Eigenschaftswort ist – haben diese Worte nicht einfach verschiedene Bedeutung, sondern es sind {{spaced text|verschiedene}}  {{spaced text|Symbole}}.)
(Im Satze „Grün ist grün“ – wo das erste Wort ein Personenname, das letzte ein Eigenschaftswort ist – haben diese Worte nicht einfach verschiedene Bedeutung, sondern es sind {{spaced text|verschiedene Symbole}}.)


{{ParTLPde|3.324}} So entstehen leicht die fundamentalsten Verwechslungen (deren die ganze Philosophie voll ist).
{{ParTLPde|3.324}} So entstehen leicht die fundamentalsten Verwechslungen (deren die ganze Philosophie voll ist).
Line 418: Line 418:
{{ParTLPde|3.327}} Das Zeichen bestimmt erst mit seiner logisch-syntaktischen Verwendung zusammen eine logische Form.
{{ParTLPde|3.327}} Das Zeichen bestimmt erst mit seiner logisch-syntaktischen Verwendung zusammen eine logische Form.


{{ParTLPde|3.328}} Wird ein Zeichen {{spaced text|nicht}}  {{spaced text|gebraucht}}, so ist es bedeutungslos. Das ist der Sinn der Devise Occams.
{{ParTLPde|3.328}} Wird ein Zeichen {{spaced text|nicht gebraucht}}, so ist es bedeutungslos. Das ist der Sinn der Devise Occams.


(Wenn sich alles so verhält als hätte ein Zeichen Bedeutung, dann hat es auch Bedeutung.)
(Wenn sich alles so verhält als hätte ein Zeichen Bedeutung, dann hat es auch Bedeutung.)
Line 456: Line 456:
{{ParTLPde|3.344}} Das, was am Symbol bezeichnet, ist das Gemeinsame aller jener Symbole, durch die das erste den Regeln der logischen Syntax zufolge ersetzt werden kann.
{{ParTLPde|3.344}} Das, was am Symbol bezeichnet, ist das Gemeinsame aller jener Symbole, durch die das erste den Regeln der logischen Syntax zufolge ersetzt werden kann.


{{ParTLPde|3.3441}} Man kann z. B. das Gemeinsame aller Notationen für die Wahrheitsfunktionen so ausdrücken: Es ist ihnen gemeinsam, dass sich alle – z. B. – durch die Notation von „∼''p''“ („nicht ''p''“) und „''p'' ∨ ''q''“ („''p'' oder ''q''“) {{spaced text|ersetzen}}  {{spaced text|lassen}}.
{{ParTLPde|3.3441}} Man kann z. B. das Gemeinsame aller Notationen für die Wahrheitsfunktionen so ausdrücken: Es ist ihnen gemeinsam, dass sich alle – z. B. – durch die Notation von „∼''p''“ („nicht ''p''“) und „''p'' ∨ ''q''“ („''p'' oder ''q''“) {{spaced text|ersetzen lassen}}.


(Hiermit ist die Art und Weise gekennzeichnet, wie eine spezielle mögliche Notation uns allgemeine Aufschlüsse geben kann.)
(Hiermit ist die Art und Weise gekennzeichnet, wie eine spezielle mögliche Notation uns allgemeine Aufschlüsse geben kann.)
Line 508: Line 508:
{{ParTLPde|4.012}} Offenbar ist, dass wir einen Satz von der Form „''aRb''“ als Bild empfinden. Hier ist das Zeichen offenbar ein Gleichnis des Bezeichneten.
{{ParTLPde|4.012}} Offenbar ist, dass wir einen Satz von der Form „''aRb''“ als Bild empfinden. Hier ist das Zeichen offenbar ein Gleichnis des Bezeichneten.


{{ParTLPde|4.013}} Und wenn wir in das Wesentliche dieser Bildhaftigkeit eindringen, so sehen wir, dass dieselbe durch {{spaced text|scheinbare}}  {{spaced text|Unregelmässigkeiten}} (wie die Verwendung der ♯ und ♭ in der Notenschrift) {{spaced text|nicht}} gestört wird.
{{ParTLPde|4.013}} Und wenn wir in das Wesentliche dieser Bildhaftigkeit eindringen, so sehen wir, dass dieselbe durch {{spaced text|scheinbare Unregelmässigkeiten}} (wie die Verwendung der ♯ und ♭ in der Notenschrift) {{spaced text|nicht}} gestört wird.


Denn auch diese Unregelmässigkeiten bilden das ab, was sie ausdrücken sollen; nur auf eine andere Art und Weise.
Denn auch diese Unregelmässigkeiten bilden das ab, was sie ausdrücken sollen; nur auf eine andere Art und Weise.
Line 540: Line 540:
Wie die Beschreibung einen Gegenstand nach seinen externen Eigenschaften, so beschreibt der Satz die Wirklichkeit nach ihren internen Eigenschaften.
Wie die Beschreibung einen Gegenstand nach seinen externen Eigenschaften, so beschreibt der Satz die Wirklichkeit nach ihren internen Eigenschaften.


Der Satz konstruiert eine Welt mit Hilfe eines logischen Gerüstes und darum kann man am Satz auch sehen, wie sich alles Logische verhält, {{spaced text|wenn}} er wahr ist. Man kann aus einem falschen Satz {{spaced text|Schlüsse}}  {{spaced text|ziehen}}.
Der Satz konstruiert eine Welt mit Hilfe eines logischen Gerüstes und darum kann man am Satz auch sehen, wie sich alles Logische verhält, {{spaced text|wenn}} er wahr ist. Man kann aus einem falschen Satz {{spaced text|Schlüsse ziehen}}.


{{ParTLPde|4.024}} Einen Satz verstehen, heisst, wissen was der Fall ist, wenn er wahr ist.
{{ParTLPde|4.024}} Einen Satz verstehen, heisst, wissen was der Fall ist, wenn er wahr ist.
Line 746: Line 746:
So kann man z. B. nicht sagen „Es gibt Gegenstände“, wie man etwa sagt „Es gibt Bücher“. Und ebenso wenig „Es gibt 100 Gegenstände“, oder „Es gibt ℵ<sub>0</sub> Gegenstände“.
So kann man z. B. nicht sagen „Es gibt Gegenstände“, wie man etwa sagt „Es gibt Bücher“. Und ebenso wenig „Es gibt 100 Gegenstände“, oder „Es gibt ℵ<sub>0</sub> Gegenstände“.


Und es ist unsinnig, von der {{spaced text|Anzahl}}&nbsp; {{spaced text|aller}}&nbsp; {{spaced text|Gegenstände}} zu sprechen.
Und es ist unsinnig, von der {{spaced text|Anzahl aller Gegenstände}} zu sprechen.


Dasselbe gilt von den Worten „Komplex“, „Tatsache“, „Funktion“, „Zahl“, etc.
Dasselbe gilt von den Worten „Komplex“, „Tatsache“, „Funktion“, „Zahl“, etc.
Line 922: Line 922:
{{ParTLPde|4.465}} Das logische Produkt einer Tautologie und eines Satzes sagt dasselbe, wie der Satz. Also ist jenes Produkt identisch mit dem Satz. Denn man kann das Wesentliche des Symbols nicht ändern, ohne seinen Sinn zu ändern.
{{ParTLPde|4.465}} Das logische Produkt einer Tautologie und eines Satzes sagt dasselbe, wie der Satz. Also ist jenes Produkt identisch mit dem Satz. Denn man kann das Wesentliche des Symbols nicht ändern, ohne seinen Sinn zu ändern.


{{ParTLPde|4.466}} Einer bestimmten logischen Verbindung von Zeichen entspricht eine bestimmte logische Verbindung ihrer Bedeutungen; {{spaced text|jede}}&nbsp; {{spaced text|beliebige}} Verbindung entspricht nur den unverbundenen Zeichen.
{{ParTLPde|4.466}} Einer bestimmten logischen Verbindung von Zeichen entspricht eine bestimmte logische Verbindung ihrer Bedeutungen; {{spaced text|jede beliebige}} Verbindung entspricht nur den unverbundenen Zeichen.


Das heisst, Sätze die für jede Sachlage wahr sind, können überhaupt keine Zeichenverbindungen sein, denn sonst könnten ihnen nur bestimmte Verbindungen von Gegenständen entsprechen.
Das heisst, Sätze die für jede Sachlage wahr sind, können überhaupt keine Zeichenverbindungen sein, denn sonst könnten ihnen nur bestimmte Verbindungen von Gegenständen entsprechen.
Line 940: Line 940:
{{ParTLPde|4.51}} Angenommen, mir wären {{spaced text|alle}} Elementarsätze gegeben: Dann lässt sich einfach fragen: welche Sätze kann ich aus ihnen bilden. Und das sind {{spaced text|alle}} Sätze und {{spaced text|so}} sind sie begrenzt.
{{ParTLPde|4.51}} Angenommen, mir wären {{spaced text|alle}} Elementarsätze gegeben: Dann lässt sich einfach fragen: welche Sätze kann ich aus ihnen bilden. Und das sind {{spaced text|alle}} Sätze und {{spaced text|so}} sind sie begrenzt.


{{ParTLPde|4.52}} Die Sätze sind Alles, was aus der Gesamtheit aller Elementarsätze folgt (natürlich auch daraus, dass es die {{spaced text|Gesamtheit}}&nbsp; {{spaced text|aller}} ist). (So könnte man in gewissem Sinne sagen, dass {{spaced text|alle}} Sätze Verallgemeinerungen der Elementarsätze sind.)
{{ParTLPde|4.52}} Die Sätze sind Alles, was aus der Gesamtheit aller Elementarsätze folgt (natürlich auch daraus, dass es die {{spaced text|Gesamtheit aller}} ist). (So könnte man in gewissem Sinne sagen, dass {{spaced text|alle}} Sätze Verallgemeinerungen der Elementarsätze sind.)


{{ParTLPde|4.53}} Die allgemeine Satzform ist eine Variable.
{{ParTLPde|4.53}} Die allgemeine Satzform ist eine Variable.
Line 952: Line 952:
{{ParTLPde|5.02}} Es liegt nahe, die Argumente von Funktionen mit den Indices von Namen zu verwechseln. Ich erkenne nämlich sowohl am Argument wie am Index die Bedeutung des sie enthaltenden Zeichens.
{{ParTLPde|5.02}} Es liegt nahe, die Argumente von Funktionen mit den Indices von Namen zu verwechseln. Ich erkenne nämlich sowohl am Argument wie am Index die Bedeutung des sie enthaltenden Zeichens.


In Russell’s „+''<sub>c</sub>''“ ist z. B. „''c''“ ein Index, der darauf hinweist, dass das ganze Zeichen das Additionszeichen für Kardinalzahlen ist. Aber diese Bezeichnung beruht auf willkürlicher Übereinkunft und man könnte statt „+''<sub>c</sub>''“ auch ein einfaches Zeichen wählen; in „∼''p''“ aber ist „''p''“ kein Index, sondern ein Argument: der Sinn von „∼''p''“ {{spaced text|kann}}&nbsp; {{spaced text|nicht}} verstanden werden, ohne dass vorher der Sinn von „''p''“ verstanden worden wäre. (Im Namen Julius Cäsar ist „Julius“ ein Index. Der Index ist immer ein Teil einer Beschreibung des Gegenstandes, dessen Namen wir ihn anhängen. Z. B. {{spaced text|Der}} Cäsar aus dem Geschlechte der Julier.)
In Russell’s „+''<sub>c</sub>''“ ist z. B. „''c''“ ein Index, der darauf hinweist, dass das ganze Zeichen das Additionszeichen für Kardinalzahlen ist. Aber diese Bezeichnung beruht auf willkürlicher Übereinkunft und man könnte statt „+''<sub>c</sub>''“ auch ein einfaches Zeichen wählen; in „∼''p''“ aber ist „''p''“ kein Index, sondern ein Argument: der Sinn von „∼''p''“ {{spaced text|kann nicht}} verstanden werden, ohne dass vorher der Sinn von „''p''“ verstanden worden wäre. (Im Namen Julius Cäsar ist „Julius“ ein Index. Der Index ist immer ein Teil einer Beschreibung des Gegenstandes, dessen Namen wir ihn anhängen. Z. B. {{spaced text|Der}} Cäsar aus dem Geschlechte der Julier.)


Die Verwechslung von Argument und Index liegt, wenn ich mich nicht irre, der Theorie Frege’s von der Bedeutung der Sätze und Funktionen zugrunde. Für Frege waren die Sätze der Logik Namen, und deren Argumente die Indices dieser Namen.
Die Verwechslung von Argument und Index liegt, wenn ich mich nicht irre, der Theorie Frege’s von der Bedeutung der Sätze und Funktionen zugrunde. Für Frege waren die Sätze der Logik Namen, und deren Argumente die Indices dieser Namen.
Line 1,216: Line 1,216:
{{ParTLPde|5.441}} Dieses Verschwinden der scheinbaren logischen Konstanten tritt auch ein, wenn „∼(∃''x'') ''.'' ∼''fx''“ dasselbe sagt wie „(''x'') ''. fx''“, oder „(∃''x'') ''. fx . x'' = ''a''“ dasselbe wie „''fa''“.
{{ParTLPde|5.441}} Dieses Verschwinden der scheinbaren logischen Konstanten tritt auch ein, wenn „∼(∃''x'') ''.'' ∼''fx''“ dasselbe sagt wie „(''x'') ''. fx''“, oder „(∃''x'') ''. fx . x'' = ''a''“ dasselbe wie „''fa''“.


{{ParTLPde|5.442}} Wenn uns ein Satz gegeben ist, so sind {{spaced text|mit}}&nbsp; {{spaced text|ihm}} auch schon die Resultate aller Wahrheitsoperationen, die ihn zur Basis haben, gegeben.
{{ParTLPde|5.442}} Wenn uns ein Satz gegeben ist, so sind {{spaced text|mit ihm}} auch schon die Resultate aller Wahrheitsoperationen, die ihn zur Basis haben, gegeben.


{{ParTLPde|5.45}} Gibt es logische Urzeichen, so muss eine richtige Logik ihre Stellung zueinander klar machen und ihr Dasein rechtfertigen. Der Bau der Logik {{spaced text|aus}} ihren Urzeichen muss klar werden.
{{ParTLPde|5.45}} Gibt es logische Urzeichen, so muss eine richtige Logik ihre Stellung zueinander klar machen und ihr Dasein rechtfertigen. Der Bau der Logik {{spaced text|aus}} ihren Urzeichen muss klar werden.
Line 1,254: Line 1,254:
{{ParTLPde|5.4611}} Die logischen Operationszeichen sind Interpunktionen.
{{ParTLPde|5.4611}} Die logischen Operationszeichen sind Interpunktionen.


{{ParTLPde|5.47}} Es ist klar, dass alles was sich überhaupt {{spaced text|von}}&nbsp; {{spaced text|vornherein}} über die Form aller Sätze sagen lässt, sich {{spaced text|aufeinmal}} sagen lassen muss.
{{ParTLPde|5.47}} Es ist klar, dass alles was sich überhaupt {{spaced text|von vornherein}} über die Form aller Sätze sagen lässt, sich {{spaced text|aufeinmal}} sagen lassen muss.


Sind ja schon im Elementarsatze alle logischen Operationen enthalten. Denn „''fa''“ sagt dasselbe wie „(∃''x'') ''. fx . x'' = ''a''“.
Sind ja schon im Elementarsatze alle logischen Operationen enthalten. Denn „''fa''“ sagt dasselbe wie „(∃''x'') ''. fx . x'' = ''a''“.
Line 1,288: Line 1,288:
(Wenn wir auch glauben, es getan zu haben.)  
(Wenn wir auch glauben, es getan zu haben.)  


So sagt „Sokrates ist identisch“ darum nichts, weil wir dem Wort „identisch“ als {{spaced text|Eigenschaftswort}}&nbsp; {{spaced text|keine}} Bedeutung gegeben haben. Denn, wenn es als Gleichheitszeichen auftritt, so symbolisiert es auf ganz andere Art und Weise – die bezeichnende Beziehung ist eine andere, – also ist auch das Symbol in beiden Fällen ganz verschieden; die beiden Symbole haben nur das Zeichen zufällig miteinander gemein.
So sagt „Sokrates ist identisch“ darum nichts, weil wir dem Wort „identisch“ als {{spaced text|Eigenschaftswort keine}} Bedeutung gegeben haben. Denn, wenn es als Gleichheitszeichen auftritt, so symbolisiert es auf ganz andere Art und Weise – die bezeichnende Beziehung ist eine andere, – also ist auch das Symbol in beiden Fällen ganz verschieden; die beiden Symbole haben nur das Zeichen zufällig miteinander gemein.


{{ParTLPde|5.474}} Die Anzahl der nötigen Grundoperationen hängt nu r von unserer Notation ab.
{{ParTLPde|5.474}} Die Anzahl der nötigen Grundoperationen hängt nu r von unserer Notation ab.
Line 1,294: Line 1,294:
{{ParTLPde|5.475}} Es kommt nur darauf an, ein Zeichensystem von einer bestimmten Anzahl von Dimensionen – von einer bestimmten mathematischen Mannigfaltigkeit – zu bilden.
{{ParTLPde|5.475}} Es kommt nur darauf an, ein Zeichensystem von einer bestimmten Anzahl von Dimensionen – von einer bestimmten mathematischen Mannigfaltigkeit – zu bilden.


{{ParTLPde|5.476}} Es ist klar, dass es sich hier nicht um eine {{spaced text|Anzahl}}&nbsp; {{spaced text|von}}&nbsp; {{spaced text|Grundbegriffen}} handelt, die bezeichnet werden müssen, sondern um den Ausdruck einer Regel.
{{ParTLPde|5.476}} Es ist klar, dass es sich hier nicht um eine {{spaced text|Anzahl von Grundbegriffen}} handelt, die bezeichnet werden müssen, sondern um den Ausdruck einer Regel.


{{ParTLPde|5.5}} Jede Wahrheitsfunktion ist ein Resultat der successiven Anwendung der Operation (– – – – –W)(''ξ, . . . .'') auf Elementarsätze.
{{ParTLPde|5.5}} Jede Wahrheitsfunktion ist ein Resultat der successiven Anwendung der Operation (– – – – –W)(''ξ, . . . .'') auf Elementarsätze.
Line 1,498: Line 1,498:
{{ParTLPde|5.5571}} Wenn ich die Elementarsätze nicht a priori angeben kann, dann muss es zu offenbarem Unsinn führen, sie angeben zu wollen.
{{ParTLPde|5.5571}} Wenn ich die Elementarsätze nicht a priori angeben kann, dann muss es zu offenbarem Unsinn führen, sie angeben zu wollen.


{{ParTLPde|5.6}} {{spaced text|Die}}&nbsp; {{spaced text|Grenzen}}&nbsp; {{spaced text|meiner}}&nbsp; {{spaced text|Sprache}} bedeuten die Grenzen meiner Welt.
{{ParTLPde|5.6}} {{spaced text|Die Grenzen meiner Sprache}} bedeuten die Grenzen meiner Welt.


{{ParTLPde|5.61}} Die Logik erfüllt die Welt; die Grenzen der Welt sind auch ihre Grenzen.
{{ParTLPde|5.61}} Die Logik erfüllt die Welt; die Grenzen der Welt sind auch ihre Grenzen.
Line 1,528: Line 1,528:
Du sagst, es verhält sich hier ganz, wie mit Auge und Gesichtsfeld. Aber das Auge siehst du wirklich {{spaced text|nicht}}.
Du sagst, es verhält sich hier ganz, wie mit Auge und Gesichtsfeld. Aber das Auge siehst du wirklich {{spaced text|nicht}}.


Und nichts {{spaced text|am}}&nbsp; {{spaced text|Gesichtsfeld}} lässt darauf schliessen, dass es von einem Auge gesehen wird.
Und nichts {{spaced text|am Gesichtsfeld}} lässt darauf schliessen, dass es von einem Auge gesehen wird.


{{ParTLPde|5.6331}} Das Gesichtsfeld hat nämlich nicht etwa eine solche Form:
{{ParTLPde|5.6331}} Das Gesichtsfeld hat nämlich nicht etwa eine solche Form:
Line 1,749: Line 1,749:
<p style="text-align:center;"><math>(\Omega ' \Omega)^{\prime} (\Omega ' \Omega)^{\prime} x = \Omega ' \Omega ' \Omega ' \Omega ' x = \Omega^{1 + 1 + 1 + 1 \prime} x = \Omega^{4 \prime} x</math></p>
<p style="text-align:center;"><math>(\Omega ' \Omega)^{\prime} (\Omega ' \Omega)^{\prime} x = \Omega ' \Omega ' \Omega ' \Omega ' x = \Omega^{1 + 1 + 1 + 1 \prime} x = \Omega^{4 \prime} x</math></p>


{{ParTLPde|6.3}} Die Erforschung der Logik bedeutet die Erforschung {{spaced text|aller}}&nbsp; {{spaced text|Gesetzmässigkeit}}. Und ausserhalb der Logik ist alles Zufall.
{{ParTLPde|6.3}} Die Erforschung der Logik bedeutet die Erforschung {{spaced text|aller Gesetzmässigkeit}}. Und ausserhalb der Logik ist alles Zufall.


{{ParTLPde|6.31}} Das sogenannte Gesetz der Induktion kann jedenfalls kein logisches Gesetz sein, denn es ist offenbar ein sinnvoller Satz. – Und darum kann es auch kein Gesetz a priori sein.
{{ParTLPde|6.31}} Das sogenannte Gesetz der Induktion kann jedenfalls kein logisches Gesetz sein, denn es ist offenbar ein sinnvoller Satz. – Und darum kann es auch kein Gesetz a priori sein.
Line 1,791: Line 1,791:
Daher ist die Beschreibung des zeitlichen Verlaufs nur so möglich, dass wir uns auf einen anderen Vorgang stützen.
Daher ist die Beschreibung des zeitlichen Verlaufs nur so möglich, dass wir uns auf einen anderen Vorgang stützen.


Ganz Analoges gilt für den Raum. Wo man z. B. sagt, es könne keines von zwei Ereignissen (die sich gegenseitig ausschliessen) eintreten, weil {{spaced text|keine}}&nbsp; {{spaced text|Ursache}} vorhanden sei, warum das eine eher als das andere eintreten solle, da handelt es sich in Wirklichkeit darum, dass man gar nicht {{spaced text|eines}} der beiden Ereignisse beschreiben kann, wenn nicht irgend eine Asymmetrie vorhanden ist. Und {{spaced text|wenn}} eine solche Asymmetrie vorhanden {{spaced text|ist}}, so können wir diese als {{spaced text|Ursache}} des Eintreffens des einen und Nicht-Eintreffens des anderen auffassen.
Ganz Analoges gilt für den Raum. Wo man z. B. sagt, es könne keines von zwei Ereignissen (die sich gegenseitig ausschliessen) eintreten, weil {{spaced text|keine Ursache}} vorhanden sei, warum das eine eher als das andere eintreten solle, da handelt es sich in Wirklichkeit darum, dass man gar nicht {{spaced text|eines}} der beiden Ereignisse beschreiben kann, wenn nicht irgend eine Asymmetrie vorhanden ist. Und {{spaced text|wenn}} eine solche Asymmetrie vorhanden {{spaced text|ist}}, so können wir diese als {{spaced text|Ursache}} des Eintreffens des einen und Nicht-Eintreffens des anderen auffassen.


{{ParTLPde|6.36111}} Das Kant’sche Problem von der rechten und linken Hand, die man nicht zur Deckung bringen kann, besteht schon in der Ebene, ja im eindimensionalen Raum, wo die beiden kongruenten Figuren ''a'' und ''b'' auch nicht zur Deckung gebracht werden können, ohne aus diesem Raum herausbewegt zu werden. Rechte und linke Hand sind tatsächlich vollkommen kongruent. Und dass man sie nicht zur Deckung bringen kann, hat damit nichts zu tun.
{{ParTLPde|6.36111}} Das Kant’sche Problem von der rechten und linken Hand, die man nicht zur Deckung bringen kann, besteht schon in der Ebene, ja im eindimensionalen Raum, wo die beiden kongruenten Figuren ''a'' und ''b'' auch nicht zur Deckung gebracht werden können, ohne aus diesem Raum herausbewegt zu werden. Rechte und linke Hand sind tatsächlich vollkommen kongruent. Und dass man sie nicht zur Deckung bringen kann, hat damit nichts zu tun.
Line 1,883: Line 1,883:
{{ParTLPde|6.5}} Zu einer Antwort, die man nicht aussprechen kann, kann man auch die Frage nicht aussprechen.
{{ParTLPde|6.5}} Zu einer Antwort, die man nicht aussprechen kann, kann man auch die Frage nicht aussprechen.


{{spaced text|Das}}&nbsp; {{spaced text|Rätsel}} gibt es nicht.
{{spaced text|Das Rätsel}} gibt es nicht.


Wenn sich eine Frage überhaupt stellen lässt, so {{spaced text|kann}} sie auch beantwortet werden.
Wenn sich eine Frage überhaupt stellen lässt, so {{spaced text|kann}} sie auch beantwortet werden.