Line 419: Line 419:
[''Vgl.'' 5.512.]
[''Vgl.'' 5.512.]


==1==
Scheinsätze sind solche, die, wenn analysiert, das, was sie ''sagen'' sollten, doch nur wieder ''zeigen.''
Scheinsätze sind solche, die, wenn analysiert, das, was sie ''sagen'' sollten, doch nur wieder ''zeigen.''


Line 585: Line 584:
Beide zusammen sind wahr oder falsch, nämlich ''das Bild auf eine bestimmte Art und Weise.'' (Dies gilt natürlich auch vom Elementarsatz.)
Beide zusammen sind wahr oder falsch, nämlich ''das Bild auf eine bestimmte Art und Weise.'' (Dies gilt natürlich auch vom Elementarsatz.)


''Jeder Satz'' kann verneint werden. Und das zeigt, daß für alle Sätze "Wahr" und "Falsch" dasselbe bedeuten. (Dies ist von allerhöchster Wichtigkeit.) (Im Gegensatz zu Russell.)<references />
''Jeder Satz'' kann verneint werden. Und das zeigt, daß für alle Sätze "Wahr" und "Falsch" dasselbe bedeuten. (Dies ist von allerhöchster Wichtigkeit.) (Im Gegensatz zu Russell.)
 
Die Bedeutung des Satzes muß durch ''ihn und seine Darstellungsweise'' auf ja oder nein fixiert sein. [''Vgl.'' 4.023.]
 
In der Logik gibt es kein Nebeneinander, kann es keine Klassifikation geben! [''S.'' 5.454.]
 
 
31. 10. 14.
 
Ein Satz wie "(∃x,φ).φx" ist gerade so gut zusammengesetzt wie ein elementarer; dies zeigt sich darin, daß wir in der Klammer "φ" und "x" ''extra'' erwähnen müssen. Beide stehen – unabhängig – in bezeichnenden Beziehungen zur Welt, gerade wie im Falle eines Elementarsatzes "ψa". [''Vgl.'' 5.5261.]
 
Verhält es sich nicht so: Die logischen Konstanten charakterisieren die Darstellungsweise der Elementarformen des Satzes?
 
Die Bedeutung des Satzes muß durch ihn und seine Darstellungsweise auf ja oder nein fixiert sein. Dazu muß sie durch ihn vollständig beschrieben sein. [''Vgl.'' 4.023.]
 
Die Darstellungsweise bildet ''nicht'' ab; nur der Satz ist Bild.
 
Die Darstellungsweise bestimmt, wie die Wirklichkeit mit dem Bild verglichen werden muß.
 
Vor allem muß die Elementarsatzform abbilden, alle Abbildung geschieht durch diese.
 
 
1.11.14.
 
Sehr nahe liegt die Verwechslung zwischen der darstellenden Beziehung des Satzes zu seiner Bedeutung und der Wahrheitsbeziehung. Jene ist für verschiedene Sätze verschieden,  diese  ist eine  und  für alle Sätze die Gleiche.
 
Es scheint als wäre "(x,φ).φx" die Form einer Tatsache φa.ψb.θc etc. (Ähnlich wäre (∃x).φx die Form von φa, wie ich auch wirklich glaubte.)
 
Und hier muß eben mein Fehler liegen.
 
Untersuche doch den Elementarsatz: welches ist denn die Form von "φa" und wie verhält sie sich zu "~φa".
 
Jener Präzedenzfall, auf den man sich immer berufen möchte, muß schon im Zeichen selber liegen. [''Vgl.'' 5.525.]
 
Die logische Form des Satzes muß schon durch die Formen seiner Bestandteile gegeben sein. (Und diese haben nur mit dem ''Sinn'' der Sätze, nicht mit ihrer Wahr- und Falschheit zu tun.)
 
In der Form des Subjekts und des Prädikats liegt schon die Möglichkeit des Subjekt-Prädikat Satzes etc.; aber – wie billig – nichts über seine Wahr- oder Falschheit.
 
Das Bild hat die Relation zur Wirklichkeit, die es nun einmal hat. Und es kommt darauf an: wie soll es darstellen. Dasselbe Bild wird mit der Wirklichkeit übereinstimmen oder nicht übereinstimmen je nachdem, wie es darstellen soll.
 
Analogie zwischen Satz und Beschreibung: ''Der Komplex, welcher'' mit diesem Zeichen kongruent ist. (Genau so in der graphischen Darstellung.)
 
Nur kann man eben nicht ''sagen,'' dieser Komplex ist mit jenem kongruent (oder dergleichen), sondern dies zeigt sich. Und daher nimmt auch die Beschreibung einen anderen Charakter an. [''Vgl.'' 4.02.3.]
 
Es muß ja die Abbildungsmethode vollkommen bestimmt sein ehe man überhaupt die Wirklichkeit mit dem Satze vergleichen kann, um zu sehen, ob er wahr oder falsch ist. Die Vergleichsmethode muß mir gegeben sein, ehe ich vergleichen kann.
 
Ob ein Satz wahr oder falsch ist, muß sich zeigen.
 
Wir müssen aber im voraus wissen, ''wie'' es sich zeigen wird.
 
Daß zwei Leute nicht kämpfen, kann man darstellen indem man sie nicht kämpfend darstellt und auch so, indem man sie kämpfend darstellt und sagt, das Bild zeige, wie es sich ''nicht'' verhält. Man ''konnte'' mit negativen Tatsachen ebensogut darstellen wie mit positiven –. Wir aber wollen bloß die Principe der Darstellung ''überhaupt'' untersuchen.
 
Der Satz "'p' ist wahr" ist gleichbedeutend mit dem logischen Produkt von 'p' und einen Satz "'p'", der den Satz 'p' beschreibt, und einer Zuordnung der Bestandteile der beiden Sätze. – Die internen Beziehungen von Satz und Bedeutung werden durch die internen Beziehungen zwischen 'p' und "'p'" abgebildet. (Schlechte Bemerkung.)
 
Nur sich nicht in Teilfragen verstricken, sondern immer dort hinaus flüchten, wo man freien Überblick über das ganze ''eine'' große Problem hat, wenn auch dieser Überblick noch unklar ist!
 
"Ein Sachverhalt ist denkbar" ("vorstellbar") heißt: Wir können uns ein Bild von ihm machen. [3.001.]
 
Der Satz muß einen logischen Ort bestimmen.
 
Die Existenz dieses logischen Orts ist durch die Existenz der Bestandteile allein verbürgt, durch die Existenz des sinnvollen Satzes. Wenn auch kein Komplex in dem logischen Ort ist, so ist doch Einer: nicht in dem logischen Ort. [''Vgl.'' 3.4.]
 
 
2. 11. 14.
 
In der Tautologie heben die Bedingungen der Übereinstimmung mit der Welt (die Wahrheitsbedingungen) – die darstellenden Beziehungen – einander auf, sodaß sie in keiner darstellenden Beziehung zur Wirklichkeit steht (nichts sagt.). [''Vgl.'' 4.462.]
 
a = a ist nicht in demselben Sinne eine Tautologie wie p ⊃ p. Daß ein Satz wahr ist, besteht nicht darin, daß er eine ''bestimmte'' Beziehung zur Wirklichkeit hat, sondern darin, daß er zu ihr eine bestimmte Beziehung wirklich ''hat.''
 
Verhält es sich nicht so: Der falsche Satz hat, wie der wahre und unabhängig von seiner Falsch- oder Wahrheit, einen Sinn, aber keine Bedeutung? (Ist hier nicht ein besserer Gebrauch des Wortes "Bedeutung"?)
 
Könnte man sagen: sobald mir Subjekt und Prädikat gegeben sind,  so ist mir eine Relation gegeben, die zwischen einem Subjekt-Prädikat Satz und seiner Bedeutung bestehen oder nicht ''bestehen'' wird. Sobald ich nur Subjekt und Prädikat kenne, kann ich auch um jene Relation wissen, die ja auch für den Fall, daß der Subjekt-Prädikat Satz falsch ist, eine unumgängliche Voraussetzung ist.
 
 
3. 11. 14.
 
Damit es den negativen Sachverhalt geben kann, muß es das Bild des positiven geben. [''Vgl.'' 5.5151.]
 
Die Kenntnis der darstellenden Relation ''darf'' sich ja auch nur auf die Kenntnis der Bestandteile des Sachverhalts gründen!
 
Könnte man also sagen: Die Kenntnis des Subjekt-Prädikat Satzes und von Subjekt und Prädikat gibt uns die Kenntnis einer internen Relation etc.?
 
Auch dies ist streng genommen nicht richtig, da wir kein bestimmtes Subjekt oder Prädikat zu kennen brauchen.
 
''Offenbar,'' daß wir den Elementarsatz als das Bild eines Sachverhalts empfinden. – Wie geht das zu? [''Vgl.'' 4.012.]
 
Muß nicht die Möglichkeit der darstellenden Beziehung durch den Satz ''selbst'' gegeben sein?
 
Der Satz ''selber'' scheidet das mit ihm Kongruierende von dem nicht Kongruierenden.
 
Zum Beispiel: ist also der Satz gegeben und Kongruenz, dann ist der Satz wahr, wenn der Sachverhalt mit ihm kongruent IST, oder es sind gegeben der Satz und Nicht-Kongruenz, dann ist der Satz wahr, wenn der Sachverhalt mit ihm nicht kongruent ist.
 
Wie aber wird uns die Kongruenz oder Nicht-Kongruenz oder dergleichen gegeben?
 
Wie kann mir ''mitgeteilt'' werden, ''wie'' der Satz darstellt? Oder kann mir das Oberhaupt nicht ''gesagt'' werden? Und wenn dem so ist, kann ich es "''wissen''"? Wenn es mir gesagt werden sollte, so müßte dies durch einen Satz geschehen; der könnte es aber nur zeigen.
 
Was gesagt werden kann, kann mir durch einen Satz gesagt werden, also kann nichts, was zum Verständnis ''aller'' Sätze nötig ist, gesagt werden.
 
Jene willkürliche Zuordnung von Zeichen und Bezeichnetem,  die die Möglichkeit der Sätze bedingt, und die ich in den ganz allgemeinen Sätzen vermißte, geschieht dort durch die Allgemeinheitsbezeichnung geradeso wie beim Elementarsatz durch Namen (denn die Allgemeinheitsbezeichnung gehört nicht zum ''Bild).'' Daher empfand man auch immer, daß die Allgemeinheit ganz wie ein Argument auftritt. [''Vgl.'' 5.523.]
 
Verneinen kann man nur einen fertigen Satz. (Ähnliches gilt von allen ab-Funktionen.<ref>ab-Funktionen sind die Wahrheitsfunktionen. S. Appendix I. (Herausg.)</ref>) [''Vgl.4.06411.'' 4.0641.]
 
Der Satz ist das logische Bild eines Sachverhaltes.
 
Die Verneinung bezieht sich auf den ''fertigen'' Sinn des verneinten Satzes und nicht auf dessen Darstellungsweise. [''Vgl.'' 4.064 ''u.'' 4.0641.]
 
Wenn ein Bild auf die vorhin erwähnte Weise darstellt was-nicht­ der-Fall-ist, so geschieht dies auch nur dadurch, daß es  ''dasjenige'' darstellt, das nicht der Fall ''ist.''
 
Denn das Bild sagt gleichsam: "''so'' ist es ''nicht''", und auf die Frage "''wie'' ist es nicht?" ist eben die Antwort der positive Satz.
 
==1==
 
<references />

Revision as of 10:09, 29 December 2020

 Tagebücher 1914-1916 


22. 8. 14.

Die Logik muß für sich selber sorgen. [S. 5.473.]

Wenn sich syntaktische Regeln für Funktionen überhaupt aufstellen lassen, dann ist die ganze Theorie der Dinge, Eigenschaften etc. überflüssig. Es ist auch gar zu auffällig, daß weder in den "Grundgesetzen" noch in den "Principia Mathematica" von dieser Theorie die Rede ist. Nochmals: denn die Logik muß für sich selbst sorgen. Ein mögliches Zeichen muß auch bezeichnen können. Alles, was überhaupt möglich ist, ist auch legitim (erlaubt). Erinnern wir uns an die Erklärung, warum "Sokrates ist Plato" unsinnig ist. Nämlich darum, weil wir eine willkürliche Bestimmung nicht getroffen haben, aber NICHT darum, weil das Zeichen an und für sich etwa illegitim sei! [Vgl. 5.473.]


2. 9. 14.

Wir müssen in einem gewissen Sinne uns nicht in der Logik irren können. Dies ist schon teilweise darin ausgedrückt: Die Logik  muß  für sich selbst sorgen. Dies ist eine ungemein tiefe und wichtige Erkenntnis. [Vgl. 5.473.]

Frege sagt: jeder rechtmäßig gebildete Satz muß einen Sinn haben, und ich sage: jeder mögliche Satz ist rechtmäßig gebildet, und wenn er keinen Sinn hat, so kann das nur daran liegen daß wir einigen seiner Bestandteilen keine Bedeutung gegeben haben. Wenn wir auch glauben, es getan zu haben. [Vgl. 5.4733.]


3. 9. 14.

Wie ist es mit der Aufgabe der Philosophie vereinbar, daß die Logik für sich selbst sorgen soll? Wenn wir z. B. fragen: ist die und die Tatsache von der Subjekt-Prädikat Form, dann müssen wir doch wissen, was wir unter der "Subjekt-Prädikat Form" verstehen. Wir müssen wissen, ob es so eine Form überhaupt gibt. Wie können wir dies wissen? "Aus den Zeichen!" Aber wie? Wir haben ja gar keine Zeichen von dieser Form. Wir können zwar sagen: Wir haben Zeichen, die sich so benehmen, wie solche von der Subjekt-Prädikat Form, aber beweist das, daß es wirklich Tatsachen dieser Form geben muß? Nämlich: wenn diese vollständig analysiert sind. Und hier fragt es sich wieder: gibt es so eine vollständige Analyse? Und wenn nicht: Was ist denn dann die Aufgabe der Philosophie?!!?

Also können wir uns fragen: Gibt es die Subjekt-Prädikat Form? Gibt es die Relationsform? Gibt es überhaupt irgend eine der Formen, von denen Russell und ich immer gesprochen haben? (Russell würde sagen: "ja! denn das ist einleuchtend." Jaha!)

Also: wenn alles, was gezeigt werden braucht, durch die  Existenz der Subjekt-Prädikat SÄTZE etc. gezeigt wird, dann ist die Aufgabe der Philosophie eine andere, als ich ursprünglich annahm. Wenn dem aber nicht so ist, so müßte das Fehlende durch eine Art Erfahrung gezeigt werden, und das halte ich für ausgeschlossen.

Die Unklarheit liegt offenbar in der Frage, worin eigentlich die logische Identität von Zeichen und Bezeichnetem besteht! Und diese Frage ist (wieder) eine Hauptansicht des ganzen philosophischen Problems.

Es sei eine Frage der Philosophie  gegeben:  etwa die, ob "A ist gut" ein Subjekt-Prädikat Satz sei; oder die, ob "A ist heller als B" ein Relations-Satz seil Wie läßt sich so eine Frage überhaupt entscheiden?! Was für eine Evidenz kann mich darüber beruhigen, daß – zum Beispiel – die erste Frage bejaht werden muß? (Dies ist eine ungemein wichtige Frage.) Ist die einzige Evidenz hier wieder jenes höchst zweifelhafte "Einleuchten"?? Nehmen wir eine ganz ähnliche Frage, die aber einfacher und grundlegender ist; nämlich diese: ist ein Punkt in unserem Gesichtsbild ein einfacher Gegenstand, ein Ding? Solche Fragen habe ich doch bisher immer als die eigentlichen philosophischen angesehen – und sie sind es auch gewiß  in einem  Sinne-aber  noch­ mals, wdche Evidenz könnte  so eine  Frage  überhaupt entscheiden? Ist hier nicht ein Fehler in der Fragestellung; denn es scheint als leuchtete mir über diese Frage gar nichts ein; es  scheint  als  könnte  ich mit Bestimmtheit sagen, daß diese Fragen überhaupt nie entschieden werden könnten.


4. 9. 14.

Wenn nicht die Existenz des Subjekt-Prädikat Satzes alles Nötige zeigt, dann könnte es doch nur die Existenz irgend einer besonderen Tatsache jener Form zeigen. Und die Kenntnis einer solchen  kann nicht für die Logik wesentlich sein.

Gesetzt den Fall, wir hätten ein Zeichen, das wirklich von der Subjekt­ Prädikat Form wäre, wäre dieses für den Ausdruck von Subjekt­ Prädikat Sätzen irgendwie geeigneter als unsere Subjekt-Prädikat Sätze? Es scheint nein! Liegt das an der bezeichnenden Relation?

Wenn sich die Logik ohne die Beantwortung gewisser Fragen abschließen läßt, dann muß sie ohne sie abgeschlossen werden.

Die logische Identität von Zeichen und Bezeichnetem besteht darin, daß man im Zeichen nicht mehr und nicht weniger wiedererkennen darf als im Bezeichneten.

Wären Zeichen und Bezeichnetes nicht ihrem vollen logischen Inhalte nach identisch, dann müßte es noch etwas Fundamentaleres geben als die Logik.


5. 9. 14.

φa, φb, aRb = Def φ [aRb]

Erinnere dich, daß die Worte "Funktion", "Argument", "Satz" etc.

in der Logik nicht vorkommen dürfen!

Von zwei Klassen zu sagen, sie seien identisch, sagt etwas. Von zwei Dingen dies zu sagen, sagt nichts; dies schon zeigt die Unzulässigkeit der Russellschen Definition.


6. 9. 14.

Der letzte Satz ist eigentlich nichts Anderes als der uralte Einwand gegen die Identität in der Mathematik. Nämlich der, daß wenn 2 × 2 wirklich gleich 4 wäre, daß dieser Satz dann nicht mehr sagen wurde als a = a.

Könnte man sagen: Die Logik kümmert die Analysierbarkeit der Funktionen, mit denen sie arbeitet, nicht.


7. 9. 14.

Bedenke, daß auch ein unanalysierter Subjekt-Prädikat Satz etwas ganz. Bestimmtes klar aussagt.

Kann man nicht sagen: Es kommt nicht darauf an, daß wir es mit nicht  analysierbaren Subjekt-Prädikat Sätzen zu tun haben, sondern darauf, daß unsere Subjekt-Prädikat Sätze sich in jeder Beziehung so wie solche benehmen, d. h. also, daß die Logik unserer Subjekt-Prädikat Sätze dieselbe ist, wie die Logik jener anderen. Es kommt uns Ja nur darauf an die Logik abzuschließen, und unser Haupteinwand gegen die nicht analysierten Subjekt-Prädikat Sätze war der, daß wir ihre Syntax nicht aufstelle können, solang wir ihre Analyse nicht kennen. Muß aber nicht die Logik eines scheinbaren Subjekt-Prädikat Satzes dieselbe sein wie die Logik eines wirklichen? Wenn eine Definition überhaupt möglich ist, die dem Satz die Subjekt-Prädikat Form gibt...?


8. 9. 14.

Das "Einleuchten", von dem Russell so viel sprach, kann nur dadurch in der Logik entbehrlich werden, daß die Sprache selbst jeden logischen Fehler verhindert. Und es ist klar, daß Jenes Einleuchten immer gänzlich trügerisch ist und war. [Vgl. 5.4731.]


19. 9. 14.

Ein Satz wie "dieser Sessel! ist braun" scheint etwas enorm Kompliziertes zu sagen, denn wollten wir diesen Satz so aussprechen, da s niemand gegen ihn Einwendungen, die aus seiner Vieldeutigkeit entspringen, machen könnte, so würde er endlos lang werden müssen.


20. 9. 14.

Daß der Satz ein logisches Abbild seiner Bedeutung ist,  leuchtet dem unbefangenen Auge ein.

Gibt es Funktionen von Tatsachen? Z.B. "Es ist besser, wenn dies der Fall ist, als wenn jenes der Fall ist."

Worin besteht denn die Verbindung zwischen dem Zeichen p und den übrigen Zeichen des Satzes "Es ist gut, daß p der Fall ist ? Worin besteht diese Verbindung??

Der Unbefangene wird sagen: Offenbar in der räumlichen Beziehung des Buchstaben p zu den zwei Nachbarzeichen. Wenn aber die Tatsache "p" eine solche wäre, in welcher keine Dinge vorkommen??

"Es ist gut, daß p" kann wohl analysiert werden in "p. es ist gut, wenn p".

Wir setzen voraus: p sei NICHT der Fall: Was heißt es dann zu sagen, "es ist gut, daß p"? Wir können ganz offenbar sagen, der Sachverhalt p sei gut, ohne zu wissen ob "p" wahr oder falsch ist.

Der Ausdruck der Grammatik: "Ein Wort bezieht sich auf ein anderes" wird hier beleuchtet.

Es handelt sich in den obigen Fällen darum anzugeben, wie Sätze in sich zusammenhängen. Wie der Satz-Verband zustande kommt. [Vgl. 4.221.]

Wie kann sich eine Funktion auf einen Satz beziehen?? Immer die uralten Fragen!

Nur sich nicht von Fragen überhäufen lassen; nur es sich bequem machen!

"φ(ψx)": Nehmen wir an, uns sei eine Funktion eines Subjekt­ Prädikat Satzes gegeben, und wir wollen die Art der Beziehung der Funktion zum Satz dadurch erklären, daß wir sagen: Die Funktion bezieht sich unmittelbar nur auf das Subjekt des Subjekt-Prädikat Satzes, und was bezeichnet, ist das logische Produkt aus dieser Beziehung und dem Subjekt-Prädikat Satzzeichen. Wenn wir das nun sagen, so könnte man fragen: wenn du den Satz so erklären kannst, warum erklärst du dann nicht auch seine Bedeutung auf die analoge Art und Weise? Nämlich "sie sei keine Funktion einer Subjekt­ Prädikat Tatsache sondern das logische Produkt einer solchen und einer Funktion ihres Subjektes"? Muß nicht der Einwand, der gegen diese Erklärung gilt, auch gegen jene gelten?


21. 9. 14.

Es scheint mir jetzt plötzlich in irgend einem Sinne klar, daß eine Eigenschaft eines Sachverhalts immer intern sein muß.

φa, ψb, aRb. Man könnte sagen, der Sachverhalt aRb habe er eine gewisse Eigenschaft, wenn die beiden ersten Satze wahr sind.

Wenn ich sage: Es ist gut, daß p der Fall ist, dann muß dies eben in sich gut sein.

Es scheint mir jetzt klar, daß es keine Funktionen von Sachverhalten geben kann.


23. 9. 14.

Man könnte fragen: wie kann der Sachverhalt p eine Eigenschaft haben, wenn es sich am Ende gar nicht so verhält?


24. 9. 14

Die Frage, wie ist eine Zuordnung von Relationen möglich, ist identisch mit dem Wahrheits-Problem.


25. 9. 14.

Denn dies ist identisch mit der Frage, wie ist die Zuordnung von Sachverhalten möglich (einem bezeichnenden und einem bezeichneten).

Sie ist nur durch die Zuordnung der Bestandteile möglich; ein Beispiel bietet die Zuordnung von Name und Benanntem. (Und es ist klar, daß auch eine Zuordnung der Relationen auf irgend eine Weise stattfindet.)

| aRb | ; | a b | ; p = aRb Def

Hier wird ein einfaches Zeichen einem Sachverhalt zugeordnet.


26. 9. 14.

Worauf gründet sich unsere – sicher wohl begründete – Zuversicht, daß wir jeden beliebigen Sinn in unserer zweidimensionalen Schrift werden ausdrücken können?!


27. 9. 14.

Ein Satz kann seinen Sinn ja nur dadurch ausdrücken, daß er dessen logisches Abbild ist!

Auffallend ist die Ähnlichkeit zwischen den Zeichen

"aRb"
und "aσR . Rσb".


29. 9. 14

Der allgemeine Begriff des Satzes führt auch einen ganz allgemeinen Begriff der Zuordnung von Satz und Sachverhalt mit Sich: Die Losung aller meiner Fragen muß höchst einfach sein!

Im Satz wird eine Welt probeweise zusammengestellt. (Wie wenn im Pariser Gerichtssaal ein Automobilunglück mit Puppen etc. dargestellt wird.)[1] [Vgl. 4.031.]

Daraus muß sich (wenn ich nicht blind wäre) sofort das Wesen der Wahrheit ergeben.

Denken wir an hieroglyphische Schriften, bei denen jedes Wort seine Bedeutung darstellt! Denken wir daran, daß auch wirkliche Bilder von Sachverhalten stimmen und nicht stimmen können. [Vgl. 4.016.]

"": Wenn in diesem Bild der rechte Mann den Menschen A vorstellt, und bezeichnet der linke den Menschen B, so könnte etwa das ganze aussagen "A ficht mit B". Der Satz in Bilderschrift kann wahr und falsch sein. Er hat einen Sinn unabhängig von seiner Wahr- oder Falschheit. An ihm muß sich alles Wesentliche demonstrieren lassen:

Man kann sagen, wir haben zwar nicht die Gewißheit, daß wir alle Sachverhalte in Bildern aufs Papier bringen können, wohl aber die Gewißheit, daß wir alle logischen Eigenschaften der Sachverhalte in einer zweidimensionalen Schrift abbilden können.

Wir sind hier noch immer sehr an der Oberfläche, aber wohl auf einer guten Ader.


30. 9. 14.

Man kann sagen, in unserem Bilde stellt der Rechte etwas dar und auch der Linke, aber selbst wenn dies nicht der Fall wäre, so könnte ihre gegenseitige Stellung etwas darstellen. (Nämlich eine Bezieh­ ung.)

Ein Bild kann Beziehungen darstellen, die es nicht gibt!!! Wie ist dies möglich?

Jetzt scheint es wieder, als müßte alle Beziehungen logisch sein, damit ihre Existenz durch die des Zeichens verbürgt sei.


2. 10. 14.

Was in "aRb.bSc" a und c verbindet ist nicht das "." Zeichen sondern das Vorkommen desselben Buchstabe "b" in den beiden einfachen Sätzen.

Man kann geradezu sagen: statt, dieser Satz hat diesen und diesen Sinn: dieser Satz stellt diesen und diesen Sachverhalt dar! [S. 4.031.]

Er bildet ihn logisch ab.

Nur so kann der Satz wahr oder falsch sein: nur dadurch kann er mit der Wirklichkeit übereinstimmen oder nicht übereinstimmen, daß er ein Bild eines Sachverhaltes ist. [Vgl. 4.06.]


3. 10. 14.

Nur in soweit ist der Satz ein Bild eines Sachverhalts, als er logisch gegliedert ist! (Ein einfaches – ungegliedertes – Zeichen kann  weder wahr noch falsch sein.) [Vgl. 4.032.]

Der Name ist kein Bild des Benannten!

Der Satz sagt nur insoweit etwas aus, als er ein Bild ist! [S. 4.03.]

Tautologien sagen nichts aus, sie sind nicht Bilder von Sachverhalten: Sie sind selber logisch vollkommen neutral: (Das logische Produkt einer Tautologie und eines Satzes sagt nicht mehr noch weniger aus als dieser allein.) [Vgl. 4.462 u. 4.465.]


4. 10. 14.

Es ist klar daß in "xRy" das bezeichnende Element einer Relation enthalten sein kann, auch wenn "x" und "y" nichts bezeichnen. Und dann ist die Relation das einzige, was in jenem Zeichen bezeichnet wird.

Aber wie ist es dann[2] möglich, daß in einem Code "Kilo" heißt: "es geht mir gut"? Hier sagt doch ein einfaches Zeichen etwas aus, und wird benützt, andern etwas mitzuteilen!! –

Kann denn in der vorigen Bedeutung das Wort "Kilo" nicht wahr oder falsch sein?!

Jedenfalls kann man doch ein einfaches Zeichen dem Sinne eines Satzes zuordnen. –

Nur die Wirklichkeit interessiert die Logik. Also die Sätze NUR in soweit sie Bilder der Wirklichkeit sind.

Wie aber KANN ein Wort wahr oder falsch sein? Es kann jedenfalls nicht den Gedanken ausdrücken, der mit der Wirklichkeit übereinstimmt oder nicht übereinstimmt. Der muß doch gegliedert sein!

Ein Wort kann nicht wahr oder falsch sein in dem Sinne, daß es nicht mit der Wirklichkeit übereinstimmen kann, oder das Gegenteil.


6. 10. 14.

Der allgemeine Begriff zweier Komplexe, von denen der. eine das logische Bild des andern sein kann, also in einem Sinne ist.

Die Übereinstimmung zweier Komplexe ist offenbar intern und kann daher nicht ausgedrückt sondern nur gezeigt werden.

"p" ist wahr, sagt nichts Anderes aus als p!

"'p' ist  wahr" ist – nach dem obigen – nur ein Scheinsatz, wie alle jene Zeichenverbindungen die scheinbar etwas sagen was nur gezeigt werden kann.


7. 10. 14.

Wenn ein Satz φa gegeben ist, so sind mit ihm auch schon alle seine logischen Funktionen (~φa etc.) mitgegeben! [Vgl. 5.442.]


8. 10. 14.

Vollständige und unvollständige Abbildung eines Sachverhaltes. (Funktion und Argument wird durch Funktion und Argument abgebildet.)

Der Ausdruck "nicht mehr weiter zerlegbar" ist auch einer der mit "Funktion", "Ding" etc. auf dem Index stehenden; wie aber wird das gezeigt, was wir durch ihn ausdrücken wollen?

(Man kann natürlich weder von einem Ding noch von einem Komplex sagen, sie seien nicht mehr weiter zerlegbar.)


9. 10. 14.

Wenn es eine unmittelbare Zuordnung von Relationen gäbe, so wäre die Frage: wie sind dann die Dinge zu einander zugeordnet, die in diesen Relationen stehen? Gibt es eine direkte Zuordnung von Relationen ohne Rücksicht auf ihren Sinn?

Ob wir zu der Annahme von "Beziehungen zwischen Beziehungen" nicht nur irregeführt werden, durch die scheinbare Analogie zwischen den Ausdrücken:

"Beziehungen zwischen Dingen"
und "Beziehungen zwischen Beziehungen"?

Ich mache bei allen diesen Überlegungen irgendwo irgend einen GRUNDLEGENDEN FEHLER.

Die Frage nach der Möglichkeit von Existenzsätzen steht nicht in der Mitte sondern am Uranfang der Logik.

Alle Probleme, die das "Axiom of Infinity" mit sich bringt, sind schon im Satze "(∃ x) x = x" zu lösen! [Vgl. 5.535.]


10. 10. 14.

Oft macht man eine Bemerkung und sieht erst  später, wie wahr sie ist.


11. 10. 14.

Unsere Schwierigkeit liegt jetzt darin, daß in der. Sprache allem Anscheine nach die Analysierbarkeit oder das Gegenteil nicht wiedergespiegelt wird. Das heißt: wir können, wie es scheint, aus der Sprache allein nicht entnehmen, ob es z.B. wirkliche Subjekt-Prädikat Tatsachen gibt oder nicht. Wie aber KÖNNTEN wir diese Tatsache oder ihr Gegenteil ausdrücken? Dies muß gezeigt werden!

Wie aber wenn wir uns um die Frage der Zerlegbarkeit gar nicht kümmerten? (Wir würden dann mit Zeichen arbeiten, die nichts bezeichnen, sondern nur durch ihre logischen Eigenschaften ausdrucken helfen.) Denn auch der unzerlegte Satz spiegelt ja logische Eigenschaften seiner Bedeutung wieder. Wie also, wenn wir sagten: daß ein Satz weiter zerlegbar ist, das  zeigt  sich , wenn wir ihn durch Definitionen weiter zerlegen, und wir arbeiten mit ihm in jedem Fall gerade so, als wäre er unanalysierbar.

Bedenke daß die "Sätze von den unendlichen Anzahlen" alle mit endlichen Zeichen dargestellt sind!

Aber brauchen wir – wenigstens nach Freges Methode – nicht hundert millionen Zeichen, um die Zahl 100.000.000 zu definieren? (Kommt es hier nicht darauf an, ob sie auf Klassen oder Dinge angewandt wird?)

Die Sätze, die von den unendlichen Zahlen handeln, können wie alle Sätze der Logik dadurch erhalten werden, daß man die Zeichen selber berechnet (denn es tritt zu den ursprünglichen Urzeichen ja an keiner Stelle ein fremdes Element hinzu), also müssen auch hier die Zeichen alle logischen Eigenschaften des Dargestellten selber haben.


12. 10. 14.

Die triviale Tatsache, daß ein vollkommen analysierter Satz ebensoviel Namen enthält als seine Bedeutung Dinge, diese Tatsache ist ein Beispiel der allumfassenden Darstellung der Welt durch die Sprache.

Man müßte jetzt einmal genauer die Definitionen der Kardinal­ zahlen untersuchen, um den eigentlichen Sinn von Sätzen wie dem "Axiom of Infinity" zu verstehen.

13. 10. 14.

Die Logik sorgt für sich selbst; wir müssen ihr nur zusehen, wie sie es macht. [Vgl. 5.473.]

Betrachten wir den Satz: "Es gibt eine Klasse mit nur einem Glied". Oder, was auf dasselbe hinauskommt, den Satz:

(∃φ):.( ∃x):φx:φy.φz. ⊃y,z.y = z

Bei "(∃x)x = x"  könnte man  verstehen, daß er tautologisch sei, da er überhaupt nicht hingeschrieben werden könnte, wenn er falsch wäre, aber hier! Dieser Satz kann an Stelle des "Axiom of Infinity" untersucht werden!

Ich weiß, daß die folgenden Sätze, wie sie stehen, unsinnig sind: Kann man von den Zahlen reden, wenn es nur Dinge gibt? Wenn also z. B. die Welt nur aus einem Dinge bestünde und aus sonst nichts, könnte man sagen, es gäbe EIN Ding? Russell würde wahrscheinlich sagen: wenn es ein Ding gibt, dann gibt es auch die Funktion (∃x) ˆξ = x. Aber!

Wenn es diese Funktion nicht tut, dann kann von der 1 nur die Rede sein, wenn es eine materielle Funktion gibt, die nur von einem Argument befriedigt wird.

Wie verhält es sich mit Sätzen wie:

(∃φ).(∃x).φx
und: (∃φ).(∃x).~φx.

Ist einer von diesen eine Tautologie? Sind dies Sätze einer Wissenschaft d. h., sind dies überhaupt Sätze?

Erinnern wir uns aber, daß die Variable und nicht die Allgemeinheitsbezeichnung die Logik charakterisiert!


14.10. 14.

Gibt es denn eine Wissenschaft der vollständig verallgemeinerten Sätze? Dies klingt höchst unwahrscheinlich.

Das ist klar: Wenn es völlig verallgemeinerte Sätze gibt, dann hängt ihr Sinn von keiner willkürlichen Zeichengebung mehr ab! Dann aber kann eine solche Zeichenverbindung die Welt nur durch ihre eigenen logischen Eigenschaften darstellen d. h., sie kann nicht falsch, und nicht wahr sein. Also gibt es keine vollständig verallgemeinerten SÄTZE. Aber jetzt die Anwendung!

Nun aber die Sätze: "(∃φ,x). φx"

und "~(∃φ,x). φx".

Welcher von ihnen ist tautologisch, welcher kontradiktorisch?

Immer wieder entsteht das Bedürfnis nach einer vergleichenden Zusammenstellung von Sätzen, die in internen Beziehungen stehen. Man könnte zu diesem Buch geradezu Bildertafeln anlegen.

(Die Tautologie zeigt, was sie zu sagen schein , die Kontradiktion zeigt das Gegenteil von dem, was sie zu sagen scheint.)

Es ist klar, daß wir alle überhaupt möglichen völlig allgemeinen Sätze bilden können sobald uns nur eine Sprache gegeben ist. Und darum ist es doch kaum zu glauben, daß solche Zeichenverbindungen wirklich etwas über die Welt aussagen sollten. – Andererseits aber dieser graduelle Übergang vom elementaren Satz zum völlig allgemeinen!!

Man kann sagen: die völlig allgemeinen Sätze kann man alle a priori bilden.


15.10.14

Es scheint doch, als könnte die bloße Existenz der in "(∃x,φ). φx" enthaltenen Formen die Wahr- oder Falschheit dieses Satzes allein nicht bestimmen! Es scheint also nicht undenkbar, daß, z. B., die Verneinung keines Elementarsatzes wahr sei. Aber würde diese Aussage nicht schon den SINN der Verneinung betreffen?

Offenbar können wir jeden ganz allgemeinen Satz auffassen als die Bejahung oder Verneinung der Existenz irgend einer Art von Tatsachen. Aber gilt dies nicht von allen Sätzen?

Jede Zeichenverbindung, die etwas über ihren eigen Sinn auszusagen scheint, ist ein Scheinsatz (wie alle Sätze der Logik).

Der Satz soll einen Sachverhalt logisch vorbilden. Das kann er aber doch nur dadurch, daß seinen Elementen willkürlich Gegen­ stände zugeordnet wurden. Wenn dies nun im ganz allgemeinen Satz nicht der Fall ist, so ist nicht einzusehen, wie er etwas außerhalb ihm darstellen soll.

Im Satze stellen wir – sozusagen – Probe die Dinge zusammen, wie sie sich in Wirklichkeit aber nicht zu verhalten brauchen, wir können aber nicht etwas Unlogisches zusammenstellen, denn dazu müßten wir in der Sprache aus der Logik heraus können. – Wenn aber der ganz allgemeine Satz nur "logische Konstante" enthält, so kann er für uns nicht mehr sein als – einfach – ein logisches Gebilde, und kann nicht mehr tun als uns seine eigenen logischen Eigenschaften zu zeigen. – Wenn es ganz allgemeine Sätze gibt, – was stellen wir in ihnen probeweise zusammen?? [Vgl. 4.031 u. 3.03.]

Wenn man sich vor der Wahrheit fürchtet (wie ich jetzt), so ahnt man nie die volle Wahrheit.

Ich habe hier die Beziehungen der Satz-Elemente zu ihren Bedeutungen gleichsam als Fühler betrachtet, durch welche der Satz mit der Außenwelt in Berührung steht; und das Verallgemeinern eines Satzes gleicht dann dem Einziehen der Fühler; bis endlich der ganz allgemeine Satz ganz isoliert ist. Aber stimmt dieses Bild? (Ziehe ich wirklich einen Fühler ein, wenn ich statt φa, (∃x).φx sage? [Vgl. 2.1515.]


16. 10. 14.

Nun scheint es aber als sprächen genau dieselben Gründe, die ich aufführte, um zu zeigen, daß "(∃x,φ).φx" nicht falsch sein könne, als sprächen diese Gründe auch dafür, daß "~(∃x,φ).φx nicht falsch sein könne; und hier zeigt sich ein grundlegender Fehler. Denn es ist gar nicht einzusehen, warum gerade der erste Satz und nicht der zweite eine Tautologie sein soll. Vergiß doch nicht, daß auch die Kontradiktion "p.~p" etc. etc. nicht wahr sein kann und doch selbst ein logisches Gebilde ist.

Angenommen, daß keine Verneinung eines Elementarsatze wahr ist, hat in diesem Falle "Verneinung" nicht einen anderen Sinn als im entgegengesetzten Falle?

"(∃φ):(x).φx" – von diesem Satz scheint es fast. gewiß, daß er weder eine Tautologie noch eine Kontradiktion ist. Hier spitzt sich das Problem unerhört zu.


17. 10. 14.

Wenn es ganz allgemeine Sätze gibt, so scheint es. also, als wären solche Sätze probeweise Zusammenstellungen "logischer Konstanten". (!)

Kann man denn aber nicht die ganze Welt vollständig mit ganz allgemeinen Sätzen beschreiben? (Das Problem zeigt sich von allen Seiten.)

Ja, man könnte die Welt vollständig durch ganz allgemeine Sätze beschreiben, also ganz ohne irgend einen Namen oder sonst ein bezeichnendes Zeichen zu verwenden. Und um auf die gewöhnliche Sprache zu kommen, brauchte man Namen etc. nur dadurch einzuführen, indem man nach einem "(∃x)" sagte "und dieses x ist A" u.s.w. [Vgl. 5.p6.]

Man kann also ein Bild der Welt entwerfen, ohne zu sagen, was was darstellt.

Nehmen wir z.B. an, die Welt bestünde aus den Dingen A und B und der Eigenschaft F, und es wäre F(A) der Fall und  nicht F(B). Diese Welt könnten wir auch durch die folgenden Sätze beschreiben:

(∃x,y).(∃φ).x ≠ y.φx.~φy:φu.φz. ⊃u,z.u = z

(∃φ).(ψ).ψ = φ
(∃x,y).(z).z = x v z = y

Und hier braucht man auch Sätze von der Art der letzten zwei, um die Gegenstände identifizieren zu können.

Aus alledem folgt natürlich, daß es ganz. allgemeine Sätze gibt!

Genügt oben nicht der erste Satz (∃x,y,φ)φx.~φy.x ≠ y? Die Schwierigkeit der Identifizierung kann man dadurch wegschaffen, indem man die ganze Welt in einem allgemeinen Satz beschreibt, welcher anfängt: "(∃x,y,z ... φ,ψ ... R,S ...)" und nun folgt ein logisches Produkt, etc.

Wenn wir sagen ist eine Einheitsfunktion und (x).φx", so heißt das soviel wie: "es gibt nur ein Ding"! (Wir sind hiermit scheinbar um den Satz "(∃x)(y).y = x" herumgekommen.)


18.10.14.

Mein Fehler liegt offenbar in einer falschen Auffassung der logischen Abbildung durch den Satz.

Eine Aussage kann nicht den logischen Bau der Welt betreffen, denn damit eine Aussage überhaupt möglich sei, damit ein Satz SINN haben KANN, muß die Welt schon den logischen Bau haben, den sie eben hat. Die Logik der Welt ist aller Wahr- und Falschheit primär.

Beiläufig gesprochen: bevor irgend ein Satz überhaupt Sinn haben kann, müssen die logischen Konstanten Bedeutung haben.

19. 10. 14.

Die Beschreibung der Welt durch Sätze ist nur dadurch möglich, daß das Bezeichnete nicht sein eigenes Zeichen ist! Anwendung –.

Beleuchtung von Kants Frage "Wie ist reine Mathematik möglich?" durch die Theorie der Tautologien!

Es leuchtet ein, daß man den Bau der Welt ohne irgend welche Namen zu nennen beschreiben können muß. [Vgl. 5.526.]


20. 10. 14.

Aus dem Satz muß man den logischen Bau des Sachverhaltes ersehen, der ihn wahr oder falsch macht. (Wie ein Bild zeigen muß, in welchen räumlichen Beziehungen die darauf wiedergegebenen Dinge stehen müssen, wenn das Bild richtig (wahr) ist.)

Die Form eines Bildes könnte man dasjenige nennen, worin das Bild mit der Wirklichkeit stimmen Muss (um sie überhaupt abbilden zu können). [Vgl. 2.17 u. 2.18.]

Die Theorie der logischen Abbildung durch die Sprache gibt als erste einen Aufschluß über das Wesen der Wahrheits-Beziehung.

Die Theorie der logischen Abbildung durch die Sprache sagt – ganz allgemein: Damit es möglich ist, daß ein Satz wahr oder falsch sei – daß er mit der Wirklichkeit übereinstimme oder nicht – dazu muß im Satze etwas mit der Wirklichkeit identisch sein. [Vgl. 2.18.]

Das was in "~p" verneint, ist nicht das"~" vor dem "p" sondern dasjenige, was allen Zeichen, die in dieser Notation mit "~p" gleichbedeutend sind, gemeinsam ist; also das Gemeinsame von

~p

~~~p
~p ∨ ~p
~p.~p  

} und dasselbe
gilt für die
Allgemeinheits-
bezeichnung etc.
etc. etc.

## [Vgl. 5.512.]

Scheinsätze sind solche, die, wenn analysiert, das, was sie sagen sollten, doch nur wieder zeigen.

Das Gefühl, daß der Satz einen Komplex auf die Art der Russellschen Beschreibungen beschreibe, rechtfertigt sich jetzt : Der Satz beschreibt den Komplex durch seine logischen Eigenschaften.

Der Satz konstruiert eine Welt mit Hilfe seines logischen Gerüstes, und darum kann man am Satz auch sehen, wie sich alles Logische verhielte, wenn er wahr wäre: man kann aus einem falschen Satz Schlüsse ziehen etc. (So kann ich sehen daß, wenn "(x,φ).φx" wahr wäre, dieser Satz im Widerspruch stünde mit einem Satze "ψa".) [Vgl. 4.023.]

Daß sich von materiellen Sätzen auf ganz allgemeine Sätze schließen läßt – daß diese zu jenen in bedeutungsvollen internen Beziehungen stehen können – zeigt, daß die ganz allgemeinen Sätze logische Konstruktionen von Sachverhalten sind.


21. 10. 14.

Ist die Russellsche Definition der Null nicht unsinnig? Kann von einer Klasse ˆx (x ≠ x) überhaupt reden? – Kann man denn von einer Klasse ˆx(x = x) reden? Ist denn x ≠ x oder x = x eine Funktion von x?? – Muß nicht die Null definiert werden durch die Hypothese (∃φ):)(x)~φx? Und Analoges würde von allen anderen  Zahlen gelten. Dies nun wirft ein Licht auf die ganze Frage nach der Existenz von Anzahlen von Dingen.

0  = ˆα{(∃φ):(x)~φx.α = ˆu(φu)} Def.

1 = ˆα {(∃φ)::(∃x).φx:φy.φz. ⊃y,z y = z:α = ˆu(φu)} Def.

(Das Gleichheitszeichen in der geschweiften Klammer könnte man vermeiden, wenn man schriebe

o = ˆu(φu){(x)~φx}.[3]

##

Der Satz muß die Möglichhit seiner Wahrheit enthalten (und so zeigen). Aber nicht mehr als die Möglichkeit. [Vgl. 2.203·u. 3.02 u. 3.13.]

Nach meiner Definition der Klassen ist (x).~ˆx(φx) die Aussage, daß ˆx(φx) null ist, und die Definition der Null ist dann 0 = ˆα[(x).~α] Def.

Ich dachte, die Möglichkeit der Wahrheit eines Satzes φ(a) ist an die Tatsache (∃x,φ).φx gebunden: Aber es ist nicht einzusehen, warum φa nur dann möglich sein soll, wenn es einen anderen Satz derselben Form gibt. φa braucht doch keinen Präzedenzfall. (Denn angenommen, es gäbe nur die beiden Elementarsätze "φa" und "ψa" und "φa" sei falsch: warum soll dieser Satz nur dann einen Sinn haben, wenn "ψa" wahr ist?!)


22. 10. 14.

Im Satz muß etwas mit seiner Bedeutung identisch sein, der Satz darf aber nicht mit seiner Bedeutung identisch sein, also muß etwas in ihm mit seiner Bedeutung nicht identisch sein. (Der Satz ist ein Gebilde mit den logischen Zügen des Dargestellten und mit noch anderen Zügen, diese nun werden willkürlich sein und in verschiedene Zeichensprachen verschieden.) Es muß also verschiedene Gebilde mit denselben logischen Zügen geben; das Dargestellte wird eines von diesen sein, und es wird sich bei der Darstellung darum handeln, dieses von anderen Gebilden mit denselben logischen Zügen zu unterscheiden (da ja sonst die Darstellung nicht eindeutig wäre). Dieser Teil der Darstellung (die Namengebung) muß nun durch willkürliche Bestimmungen geschehen. Es muß darnach also jeder Satz  Züge mit willkürlich bestimmten Bedeutungen enthalten.

Versucht man dies auf die ganz allgemeinen Sätze anzuwenden so scheint es, daß darin irgend ein grundlegender Fehler ist.

Die Allgemeinheit des ganz allgemeinen Satzes ist die zufällige. Er handelt von allen Dingen, die es zufälligerweise gibt.  Und  darum ist er ein materieller Satz.


23. 10. 14.

Einerseits scheint meine Theorie der logischen Abbildung die einzig mögliche, andererseits scheint in ihr ein unlöslicher Widerspruch zu sein!

Wenn der ganz allgemeine Satz nicht ganz entmaterialisiert ist so wird ein Satz durch die Verallgemeinerung wohl überhaupt nicht entmaterialisiert, wie ich glaubte.

Ob ich von einem bestimmten Ding oder von allen Dingen, die es gibt, etwas aussage, die Aussage ist gleich materiell.

"Alle Dinge", das ist sozusagen eine Beschreibung statt "a und b und c".

Wie, wenn unsere Zeichen ebenso unbestimmt wären, wie die Welt, welche sie spiegeln?

Um das Zeichen im Zeichen zu erkennen, muß man auf  den Gebrauch achten. [Vgl. 3.326.]

Wollten wir dasjenige, welches wir durch "(x).φx" ausdrücken, durch das Vorsetzen eines Index vor "φx" ausdrücken,  etwa  so "Alg. φx", es würde nicht genügen (wir wüßten nicht, was verallgemeinert wurde).

Wollten wir es durch einen Index am "x" anzeigen, etwa so φ(xA), es würde auch nicht genügen (wir wüßten auf diese Weise nicht den Bereich der Allgemeinheit).

Wollten wir es durch Einfüllen einer Marke in die leeren Argumentstellen versuchen, etwa so "(A, A). ψ(A, A)", es würde nicht genügen (wir könnten die Identität der Variablen nicht feststellen).

Alle diese Bezeichnungsweisen genügen nicht, weil sie nicht die notwendigen logischen Eigenschaften haben. Alle jene Zeichenverbindungen vermögen den gewünschten Sinn – auf die vorgeschlagene Weise – nicht abzubilden. [Vgl. 4.0411.]


24. 10. 14.

Um überhaupt eine Aussage machen zu können, müssen wir – in einem Sinne – wissen, wie es sich verhält, wenn die Aussage wahr ist (und dies bilden wir eben ab). [Vgl. 4.02.4.]

Der Satz drückt aus, was ich nicht weiß, was ich aber doch wissen muß, um ihn überhaupt aussagen zu können, das zeige ich in ihm.

Die Definition ist eine Tautologie und zeigt interne Relationen zwischen ihren beiden Gliedern!


25. 10. 14.

Warum aber untersuchst du nie ein einzelnes spezielles Zeichen auf die Art und Weise hin, wie es logisch abbildet?

Der vollkommen analysierte Satz muß seine Bedeutung vorstellen.

Man könnte auch sagen, unsere Schwierigkeit läuft da hinaus, daß der ganz allgemeine Satz nicht zusammengesetzt zu sein scheint. –

Er scheint nicht, wie alle anderen Sätze, aus willkürlich bezeichnenden Bestandteilen zu bestehen, die in einer logischen Form vereinigt sind. Er scheint keine Form zu HABEN, sondern selbst eine in sich abgeschlossene Form zu sein.

Man braucht bei den logischen Konstanten nie nach ihrer Existenz zu fragen, sie können ja auch verschwinden!

Warum soll "φ(ˆx)" nicht vorstellen, wie (x).φx ist? Kommt es da nicht nur darauf an, wie – auf welche Art und Weise – jenes Zeichen etwas vorstellt?

Angenommen, ich wollte vier Paare kämpfender Männer darstellen, könnte ich es nicht so machen, daß ich nur eines darstelle und sage: "So sehen alle viere aus"? (Durch diesen Nachsatz bestimme ich die Art und Weise der Darstellung.) (Ähnlich stelle ich (x).φx durch "φ(ˆx)" dar.)

Bedenke aber, daß es keine hypothetischen internen Beziehungen gibt. Ist eine Struktur gegeben und eine strukturelle Beziehung an ihr, dann muß es eine andere Struktur geben, die jene Beziehung zu der ersten hat. (Dies liegt ja im Wesen der strukturellen Beziehungen.)

Und dies spricht für die Richtigkeit der obigen Bemerkung, sie wird hierdurch zu keiner – Ausflucht.


26. 10. 14.

Es scheint also, als wäre nicht die logische Identität von Zeichen und Bezeichnetem nötig, sondern nur eine interne, logische Relation zwischen beiden. (Das Bestehen einer solchen schließt in gewissem Sinne das Bestehen einer Art grundlegender – interner – Identität mit ein.)

Es handelt sich ja nur darum, daß das Logische des Bezeichneten durch das Logische des Zeichens und der Bezeichnungsweise allein vollständig bestimmt ist. Man könnte sagen: Zeichen und Bezeichnungsweise zusammen müssen mit dem Bezeichneten logisch identisch sein.

Der Sinn des Satzes ist das, was er vorstellt. [Vgl. 2.221.]

27. 10. 14.

"x = y" ist keine Satzform. (Folgen.)

Es ist ja klar, daß "aRa" gleichbedeutend wäre mit "aRb.a =  b". Man kann also den Scheinsatz "a = b" durch eine ganz analysierte Notation zum Verschwinden bringen. Bester Beweis für die Richtigkeit der obigen Bemerkung.

Die Schwierigkeit vor meiner Theorie  der logischen  Abbildung war die, einen Zusammenhang zwischen den Zeichen auf Papier und einem Sachverhalt draußen in der Welt zu finden.

Ich sagte immer, die Wahrheit ist eine Beziehung zwischen dem Satz und dem Sachverhalt, konnte aber niemals eine solche Beziehung ausfindig machen.·

Die Darstellung der Welt durch ganz allgemeine Sätze könnte man die unpersönliche Darstellung der Welt nennen.

Wie geschieht die unpersönliche Darstellung der Welt?

Der Satz ist ein Modell der Wirklichkeit, so wie wir sie uns denken. [S. 4.01.]


28.10.14.

Was der Scheinsatz "es gibt n Dinge" ausdrücken will, zeigt sich in der Sprache durch das Vorhandensein von n Eigennamen mit verschiedener Bedeutung. (Etc.)

Das, was die ganz allgemeinen Sätze beschreiben, sind allerdings in gewissem Sinne strukturelle Eigenschaften der Welt. Dennoch können diese Sätze noch immer wahr oder falsch sein. Auch nachdem sie Sinn haben, bleibt der Welt noch immer jener Spielraum.

Schließlich verändert ja die Wahr- oder Falschheit jedes Satzes etwas an der allgemeinen Struktur der Welt. Und der Spielraum, der ihrer Struktur durch die GESAMTHEIT aller Elementarsätze gelassen wird, ist eben derjenige, welchen die ganz allgemeinen Sätze begrenzen. [Vgl. 5.5262.]


29. 10. 14.

Denn, wenn ein Elementarsatz wahr ist, so ist doch jedenfalls ein Elementarsatz mehr. [S. 5.5262.]

Damit ein Satz wahr sei, muß er vor allem wahr sein können, und nur das geht die Logik etwas an.

Der Satz muß zeigen, was er sagen will. – Er muß sich zu seiner Bedeutung ähnlich verhalten, wie eine Beschreibung zu ihrem Gegenstand.

Die logische Form des Sachverhaltes aber, läßt sich nicht beschreiben. [Vgl. 4.12 u. 4.121.]

Die interne Relation zwischen dem Satz und seiner Bedeutung, die Bezeichnungsweise-ist das System von Koordinaten, das den Sachverhalt in dem Satz abbildet. Der Satz entspricht den Grundkoordinaten.

Man könnte zwei Koordinaten ap und bp als einen Satz auffassen der aussagt, der materielle Punkt P befinde sich im Ort (ab). Und damit diese Aussage möglich sei, müssen also die Koordinaten a und b wirklich einen Ort bestimmen. Damit eine Aussage möglich ist, müssen die logischen Koordinaten wirklich einen logischen Ort bestimmen!

(Der Gegenstand, von welchem die allgemeinen Sätze handeln, ist recht eigentlich die Welt; die in ihnen durch eine logische Beschreibung eintritt. – Und darum kommt die Welt eigentlich doch nicht in ihnen vor, so wie ja auch der Gegenstand der Beschreibung nicht in dieser vorkommt.)

Daß in gewissem Sinne die logische Form von p vorhanden sein muß, auch wenn p nicht der Fall ist, das zeigt sich symbolisch dadurch, daß "p" in "~p" vorkommt.

Die Schwierigkeit ist die: wie kann es die Form von p geben, wenn es keinen Sachverhalt dieser Form gibt. Und worin besteht diese Form dann eigentlich?!

Analytische Sätze gibt es nicht.


30. 10. 14.

Könnte man sagen : in "~φ(x)" stellt "φ(x)" vor, wie es sich nicht verhält?

Man könnte auch auf einem Bild eine negative Tatsache darstellen, indem man darstellt, was nicht der Fall ist.

Wenn wir aber diese Darstellungsmethoden einräumen, was ist dann eigentlich charakteristisch für die Beziehung des Darstellens?

Kann man nicht sagen: Es gibt eben verschiedene logische Koordinatensysteme!

Es gibt eben verschiedene Darstellungsweisen, auch durch das Bild, und das Darstellende ist nicht nur das Zeichen oder Bild, sondern auch die Methode der Darstellung. Aller Darstellung ist gemeinsam, daß sie stimmen oder nicht stimmen, wahr oder falsch sein kann.

Denn, Bild und Darstellungsweise sind ganz außerhalb des Dargestellten!

Beide zusammen sind wahr oder falsch, nämlich das Bild auf eine bestimmte Art und Weise. (Dies gilt natürlich auch vom Elementarsatz.)

Jeder Satz kann verneint werden. Und das zeigt, daß für alle Sätze "Wahr" und "Falsch" dasselbe bedeuten. (Dies ist von allerhöchster Wichtigkeit.) (Im Gegensatz zu Russell.)

Die Bedeutung des Satzes muß durch ihn und seine Darstellungsweise auf ja oder nein fixiert sein. [Vgl. 4.023.]

In der Logik gibt es kein Nebeneinander, kann es keine Klassifikation geben! [S. 5.454.]


31. 10. 14.

Ein Satz wie "(∃x,φ).φx" ist gerade so gut zusammengesetzt wie ein elementarer; dies zeigt sich darin, daß wir in der Klammer "φ" und "x" extra erwähnen müssen. Beide stehen – unabhängig – in bezeichnenden Beziehungen zur Welt, gerade wie im Falle eines Elementarsatzes "ψa". [Vgl. 5.5261.]

Verhält es sich nicht so: Die logischen Konstanten charakterisieren die Darstellungsweise der Elementarformen des Satzes?

Die Bedeutung des Satzes muß durch ihn und seine Darstellungsweise auf ja oder nein fixiert sein. Dazu muß sie durch ihn vollständig beschrieben sein. [Vgl. 4.023.]

Die Darstellungsweise bildet nicht ab; nur der Satz ist Bild.

Die Darstellungsweise bestimmt, wie die Wirklichkeit mit dem Bild verglichen werden muß.

Vor allem muß die Elementarsatzform abbilden, alle Abbildung geschieht durch diese.


1.11.14.

Sehr nahe liegt die Verwechslung zwischen der darstellenden Beziehung des Satzes zu seiner Bedeutung und der Wahrheitsbeziehung. Jene ist für verschiedene Sätze verschieden,  diese  ist eine  und  für alle Sätze die Gleiche.

Es scheint als wäre "(x,φ).φx" die Form einer Tatsache φa.ψb.θc etc. (Ähnlich wäre (∃x).φx die Form von φa, wie ich auch wirklich glaubte.)

Und hier muß eben mein Fehler liegen.

Untersuche doch den Elementarsatz: welches ist denn die Form von "φa" und wie verhält sie sich zu "~φa".

Jener Präzedenzfall, auf den man sich immer berufen möchte, muß schon im Zeichen selber liegen. [Vgl. 5.525.]

Die logische Form des Satzes muß schon durch die Formen seiner Bestandteile gegeben sein. (Und diese haben nur mit dem Sinn der Sätze, nicht mit ihrer Wahr- und Falschheit zu tun.)

In der Form des Subjekts und des Prädikats liegt schon die Möglichkeit des Subjekt-Prädikat Satzes etc.; aber – wie billig – nichts über seine Wahr- oder Falschheit.

Das Bild hat die Relation zur Wirklichkeit, die es nun einmal hat. Und es kommt darauf an: wie soll es darstellen. Dasselbe Bild wird mit der Wirklichkeit übereinstimmen oder nicht übereinstimmen je nachdem, wie es darstellen soll.

Analogie zwischen Satz und Beschreibung: Der Komplex, welcher mit diesem Zeichen kongruent ist. (Genau so in der graphischen Darstellung.)

Nur kann man eben nicht sagen, dieser Komplex ist mit jenem kongruent (oder dergleichen), sondern dies zeigt sich. Und daher nimmt auch die Beschreibung einen anderen Charakter an. [Vgl. 4.02.3.]

Es muß ja die Abbildungsmethode vollkommen bestimmt sein ehe man überhaupt die Wirklichkeit mit dem Satze vergleichen kann, um zu sehen, ob er wahr oder falsch ist. Die Vergleichsmethode muß mir gegeben sein, ehe ich vergleichen kann.

Ob ein Satz wahr oder falsch ist, muß sich zeigen.

Wir müssen aber im voraus wissen, wie es sich zeigen wird.

Daß zwei Leute nicht kämpfen, kann man darstellen indem man sie nicht kämpfend darstellt und auch so, indem man sie kämpfend darstellt und sagt, das Bild zeige, wie es sich nicht verhält. Man konnte mit negativen Tatsachen ebensogut darstellen wie mit positiven –. Wir aber wollen bloß die Principe der Darstellung überhaupt untersuchen.

Der Satz "'p' ist wahr" ist gleichbedeutend mit dem logischen Produkt von 'p' und einen Satz "'p'", der den Satz 'p' beschreibt, und einer Zuordnung der Bestandteile der beiden Sätze. – Die internen Beziehungen von Satz und Bedeutung werden durch die internen Beziehungen zwischen 'p' und "'p'" abgebildet. (Schlechte Bemerkung.)

Nur sich nicht in Teilfragen verstricken, sondern immer dort hinaus flüchten, wo man freien Überblick über das ganze eine große Problem hat, wenn auch dieser Überblick noch unklar ist!

"Ein Sachverhalt ist denkbar" ("vorstellbar") heißt: Wir können uns ein Bild von ihm machen. [3.001.]

Der Satz muß einen logischen Ort bestimmen.

Die Existenz dieses logischen Orts ist durch die Existenz der Bestandteile allein verbürgt, durch die Existenz des sinnvollen Satzes. Wenn auch kein Komplex in dem logischen Ort ist, so ist doch Einer: nicht in dem logischen Ort. [Vgl. 3.4.]


2. 11. 14.

In der Tautologie heben die Bedingungen der Übereinstimmung mit der Welt (die Wahrheitsbedingungen) – die darstellenden Beziehungen – einander auf, sodaß sie in keiner darstellenden Beziehung zur Wirklichkeit steht (nichts sagt.). [Vgl. 4.462.]

a = a ist nicht in demselben Sinne eine Tautologie wie p ⊃ p. Daß ein Satz wahr ist, besteht nicht darin, daß er eine bestimmte Beziehung zur Wirklichkeit hat, sondern darin, daß er zu ihr eine bestimmte Beziehung wirklich hat.

Verhält es sich nicht so: Der falsche Satz hat, wie der wahre und unabhängig von seiner Falsch- oder Wahrheit, einen Sinn, aber keine Bedeutung? (Ist hier nicht ein besserer Gebrauch des Wortes "Bedeutung"?)

Könnte man sagen: sobald mir Subjekt und Prädikat gegeben sind,  so ist mir eine Relation gegeben, die zwischen einem Subjekt-Prädikat Satz und seiner Bedeutung bestehen oder nicht bestehen wird. Sobald ich nur Subjekt und Prädikat kenne, kann ich auch um jene Relation wissen, die ja auch für den Fall, daß der Subjekt-Prädikat Satz falsch ist, eine unumgängliche Voraussetzung ist.


3. 11. 14.

Damit es den negativen Sachverhalt geben kann, muß es das Bild des positiven geben. [Vgl. 5.5151.]

Die Kenntnis der darstellenden Relation darf sich ja auch nur auf die Kenntnis der Bestandteile des Sachverhalts gründen!

Könnte man also sagen: Die Kenntnis des Subjekt-Prädikat Satzes und von Subjekt und Prädikat gibt uns die Kenntnis einer internen Relation etc.?

Auch dies ist streng genommen nicht richtig, da wir kein bestimmtes Subjekt oder Prädikat zu kennen brauchen.

Offenbar, daß wir den Elementarsatz als das Bild eines Sachverhalts empfinden. – Wie geht das zu? [Vgl. 4.012.]

Muß nicht die Möglichkeit der darstellenden Beziehung durch den Satz selbst gegeben sein?

Der Satz selber scheidet das mit ihm Kongruierende von dem nicht Kongruierenden.

Zum Beispiel: ist also der Satz gegeben und Kongruenz, dann ist der Satz wahr, wenn der Sachverhalt mit ihm kongruent IST, oder es sind gegeben der Satz und Nicht-Kongruenz, dann ist der Satz wahr, wenn der Sachverhalt mit ihm nicht kongruent ist.

Wie aber wird uns die Kongruenz oder Nicht-Kongruenz oder dergleichen gegeben?

Wie kann mir mitgeteilt werden, wie der Satz darstellt? Oder kann mir das Oberhaupt nicht gesagt werden? Und wenn dem so ist, kann ich es "wissen"? Wenn es mir gesagt werden sollte, so müßte dies durch einen Satz geschehen; der könnte es aber nur zeigen.

Was gesagt werden kann, kann mir durch einen Satz gesagt werden, also kann nichts, was zum Verständnis aller Sätze nötig ist, gesagt werden.

Jene willkürliche Zuordnung von Zeichen und Bezeichnetem,  die die Möglichkeit der Sätze bedingt, und die ich in den ganz allgemeinen Sätzen vermißte, geschieht dort durch die Allgemeinheitsbezeichnung geradeso wie beim Elementarsatz durch Namen (denn die Allgemeinheitsbezeichnung gehört nicht zum Bild). Daher empfand man auch immer, daß die Allgemeinheit ganz wie ein Argument auftritt. [Vgl. 5.523.]

Verneinen kann man nur einen fertigen Satz. (Ähnliches gilt von allen ab-Funktionen.[4]) [Vgl.4.06411. 4.0641.]

Der Satz ist das logische Bild eines Sachverhaltes.

Die Verneinung bezieht sich auf den fertigen Sinn des verneinten Satzes und nicht auf dessen Darstellungsweise. [Vgl. 4.064 u. 4.0641.]

Wenn ein Bild auf die vorhin erwähnte Weise darstellt was-nicht­ der-Fall-ist, so geschieht dies auch nur dadurch, daß es  dasjenige darstellt, das nicht der Fall ist.

Denn das Bild sagt gleichsam: "so ist es nicht", und auf die Frage "wie ist es nicht?" ist eben die Antwort der positive Satz.

1

  1. Diese Bemerkung...
  2. Bezieht sich auf früher.
  3. Gesprochen: Die Klasse aller derjenigen Klassen der Elemente u, für welche φu, für welche kein Element φ ist. (Herausg.)
  4. ab-Funktionen sind die Wahrheitsfunktionen. S. Appendix I. (Herausg.)