6,299
edits
No edit summary |
No edit summary |
||
Line 25: | Line 25: | ||
Ogni proposizione ha un contenuto e una forma. Otteniamo l’immagine della forma pura se facciamo astrazione dal significato delle singole parole, o simboli (nella misura in cui hanno significati indipendenti); vale a dire, se sostituiamo variabili alle costanti della proposizione. Le regole della sintassi che valevano per le costanti devono valere anche per le variabili. Per sintassi, in questo senso generale della parola, io intendo le regole che ci dicono quali sono quelle sole connessioni all’interno delle quali una parola ha significato, escludendo così le formazioni insensate. La sintassi del linguaggio ordinario, com’è risaputo, non è del tutto adeguata a questo scopo. Essa non previene in tutti i casi la costruzione di pseudo-proposizioni insensate (costruzioni quali “il rosso è più alto del verde” o “la Realtà, benché sia un ''in sé'', deve poter diventare altrettanto bene un ''per me''”, etc.). | Ogni proposizione ha un contenuto e una forma. Otteniamo l’immagine della forma pura se facciamo astrazione dal significato delle singole parole, o simboli (nella misura in cui hanno significati indipendenti); vale a dire, se sostituiamo variabili alle costanti della proposizione. Le regole della sintassi che valevano per le costanti devono valere anche per le variabili. Per sintassi, in questo senso generale della parola, io intendo le regole che ci dicono quali sono quelle sole connessioni all’interno delle quali una parola ha significato, escludendo così le formazioni insensate. La sintassi del linguaggio ordinario, com’è risaputo, non è del tutto adeguata a questo scopo. Essa non previene in tutti i casi la costruzione di pseudo-proposizioni insensate (costruzioni quali “il rosso è più alto del verde” o “la Realtà, benché sia un ''in sé'', deve poter diventare altrettanto bene un ''per me''”, etc.). | ||
Se proviamo ad analizzare una qualsiasi proposizione data, troveremo in generale che essa è una somma logica, un prodotto logico o un’altra funzione di verità di proposizioni più semplici. Ma la nostra analisi, se portata avanti a sufficienza, deve arrivare al punto in cui raggiunge forme proposizionali che non sono esse stesse composte di forme proposizionali più semplici. Prima o poi dobbiamo raggiungere la connessione ultima dei termini, la connessione immediata che non può essere spezzata senza sopprimere la forma proposizionale come tale. Le proposizioni che presentano questa connessione ultima dei termini io le chiamo, seguendo B. Russell, proposizioni atomiche. Queste, pertanto, sono il nocciolo di ogni proposizione, sono ''queste'' a contenere la materia prima, e tutto il resto non è che uno sviluppo di questa materia prima. È ad esse che noi dobbiamo guardare se siamo alla ricerca del contenuto delle proposizioni. È compito della teoria della conoscenza trovarle e comprendere il modo in cui sono costruite a partire dalle parole o simboli. Questo compito è molto difficile e la Filosofia ha a malapena iniziato a misurarcisi sotto alcuni rispetti. Di quale metodo disponiamo per affrontarlo? L’idea è di esprimere in un simbolismo appropriato quanto nel linguaggio ordinario conduce a fraintendimenti senza fine. Detto altrimenti, dove il linguaggio ordinario nasconde la struttura logica, dove consente la formazione di pseudo-proposizioni, dove impiega un singolo termine in un’infinità di significati differenti, dobbiamo rimpiazzarlo con un simbolismo che dia una chiara immagine della struttura logica, escluda le pseudo-proposizioni e impieghi i termini in maniera inequivocabile. Ora, noi possiamo sostituire un simbolismo chiaro a quello impreciso solamente ispezionando i fenomeni che vogliamo descrivere, cioè cercando di comprendere la loro molteplicità logica. In altre parole, possiamo pervenire a un’analisi corretta soltanto per mezzo di quella che si può chiamare un’indagine logica dei fenomeni stessi, vale a dire, in un certo senso, ''a posteriori'' e senza congetturare nulla sulle loro possibilità ''a priori''. Si è spesso tentati di chiedersi, da un punto di vista ''a priori'': | Se proviamo ad analizzare una qualsiasi proposizione data, troveremo in generale che essa è una somma logica, un prodotto logico o un’altra funzione di verità di proposizioni più semplici. Ma la nostra analisi, se portata avanti a sufficienza, deve arrivare al punto in cui raggiunge forme proposizionali che non sono esse stesse composte di forme proposizionali più semplici. Prima o poi dobbiamo raggiungere la connessione ultima dei termini, la connessione immediata che non può essere spezzata senza sopprimere la forma proposizionale come tale. Le proposizioni che presentano questa connessione ultima dei termini io le chiamo, seguendo B. Russell, proposizioni atomiche. Queste, pertanto, sono il nocciolo di ogni proposizione, sono ''queste'' a contenere la materia prima, e tutto il resto non è che uno sviluppo di questa materia prima. È ad esse che noi dobbiamo guardare se siamo alla ricerca del contenuto delle proposizioni. È compito della teoria della conoscenza trovarle e comprendere il modo in cui sono costruite a partire dalle parole o simboli. Questo compito è molto difficile e la Filosofia ha a malapena iniziato a misurarcisi sotto alcuni rispetti. Di quale metodo disponiamo per affrontarlo? L’idea è di esprimere in un simbolismo appropriato quanto nel linguaggio ordinario conduce a fraintendimenti senza fine. Detto altrimenti, dove il linguaggio ordinario nasconde la struttura logica, dove consente la formazione di pseudo-proposizioni, dove impiega un singolo termine in un’infinità di significati differenti, dobbiamo rimpiazzarlo con un simbolismo che dia una chiara immagine della struttura logica, escluda le pseudo-proposizioni e impieghi i termini in maniera inequivocabile. Ora, noi possiamo sostituire un simbolismo chiaro a quello impreciso solamente ispezionando i fenomeni che vogliamo descrivere, cioè cercando di comprendere la loro molteplicità logica. In altre parole, possiamo pervenire a un’analisi corretta soltanto per mezzo di quella che si può chiamare un’indagine logica dei fenomeni stessi, vale a dire, in un certo senso, ''a posteriori'' e senza congetturare nulla sulle loro possibilità ''a priori''. Si è spesso tentati di chiedersi, da un punto di vista ''a priori'': quali ''possono'' essere, tutto considerato, le sole forme delle proposizioni atomiche?, e di rispondere, ad esempio: proposizioni soggetto-predicato e proposizioni relazionali a due o più posti e poi, forse, proposizioni che mettono in relazione tra loro predicati e relazioni, e così via. Ma questo, io credo, è un mero gioco di parole. Una forma atomica non si può prevedere. E sarebbe sorprendente se i fenomeni reali non avessero nulla di più da insegnarci sulla propria struttura. A simili congetture circa la struttura delle proposizioni atomiche noi siamo condotti dal nostro linguaggio ordinario, che impiega la forma soggetto-predicato e la forma relazionale. Ma in ciò il nostro linguaggio è fuorviante: cercherò di spiegarlo con una similitudine. Immaginiamo due piani paralleli, I e II. Sul piano I sono disegnate delle figure, diciamo ellissi e rettangoli di differenti dimensioni e forme, e il nostro compito è di riprodurre di queste figure sul piano II. Possiamo immaginarci due modi, tra gli altri, di fare ciò. Possiamo, primo, stabilire una legge di proiezione – poniamo, quella della proiezione ortogonale o un’altra qualsiasi – e poi procedere a proiettare le figure da I a II seguendo questa legge. Oppure, secondo, potremmo procedere così: stabiliamo la regola che ogni ellisse sul piano I deve apparire come cerchio sul piano II, e ogni rettangolo come un quadrato su II. Questa maniera di rappresentazione può tornarci utile se per qualche ragione preferiamo tracciare solo cerchi e quadrati sul piano II. Naturalmente, da queste raffigurazioni non si può inferire immediatamente la forma esatta delle figure originali sul piano I. Possiamo soltanto dedurre da esse che l’originale era un’ellisse o un rettangolo. Per risalire alla forma determinata dell’originale in un dato caso, dovremmo conoscere il metodo specifico con il quale, per esempio, un’ellisse in particolare viene proiettata nel cerchio che ho davanti. Il caso del linguaggio ordinario è del tutto analogo. Se i fatti della realtà sono le ellissi e i rettangoli sul piano I, la forma soggetto-predicato e quella relazionale corrispondono ai cerchi e ai quadrati sul piano II. Queste forme sono le norme del nostro peculiare linguaggio, nel quale proiettiamo ''un’infinità di'' forme logiche ''differenti in un’infinità di'' modi ''differenti''. E proprio per questa ragione non possiamo trarre conclusioni che non siano assai vaghe dall’impiego di queste norme circa la forma logica reale dei fenomeni descritti. Forme come “questo articolo è noioso”, “il tempo è bello”, “sono pigro”, che non hanno nulla in comune tra di loro, si presentano come proposizioni soggetto-predicato, cioè, apparentemente, come proposizioni della stessa forma. | ||
Se ora ci accingiamo a un’analisi vera e propria, scopriamo forme logiche che hanno una somiglianza assai limitata con le regole del linguaggio ordinario. Ci imbattiamo nelle forme dello spazio e del tempo con l’intera varietà degli oggetti spaziali e temporali, come colori, suoni, etc., etc., con le loro gradazioni, transizioni continue e combinazioni in svariate proposizioni: noi non possiamo cogliere tutto questo con i nostri comuni mezzi d’espressione. E qui vorrei fare la mia prima osservazione circostanziata sull’analisi logica dei fenomeni reali: cioè che, per rappresentarli, dobbiamo far entrare i numeri (razionali e irrazionali) nella struttura delle proposizioni atomiche stesse. Lo illustrerò con un esempio. Si immagini un sistema di assi ortogonali, per così dire un reticolo, disegnato nel nostro campo visivo e una scala fissata arbitrariamente. È chiaro che possiamo in tal modo descrivere la forma e la posizione di ogni macchia di colore nel nostro campo visivo per mezzo di asserzioni contenenti numeri il cui significato è relativo al sistema di coordinate e all’unità di misura scelta. Di nuovo, è evidente che questa descrizione avrà la giusta molteplicità logica e che un’altra descrizione la cui molteplicità è minore non andrà bene. Un semplice esempio è dato dalla rappresentazione di una macchia P per mezzo dell’espressione “[6-9, 3-8]” e di una proposizione | Se ora ci accingiamo a un’analisi vera e propria, scopriamo forme logiche che hanno una somiglianza assai limitata con le regole del linguaggio ordinario. Ci imbattiamo nelle forme dello spazio e del tempo con l’intera varietà degli oggetti spaziali e temporali, come colori, suoni, etc., etc., con le loro gradazioni, transizioni continue e combinazioni in svariate proposizioni: noi non possiamo cogliere tutto questo con i nostri comuni mezzi d’espressione. E qui vorrei fare la mia prima osservazione circostanziata sull’analisi logica dei fenomeni reali: cioè che, per rappresentarli, dobbiamo far entrare i numeri (razionali e irrazionali) nella struttura delle proposizioni atomiche stesse. Lo illustrerò con un esempio. Si immagini un sistema di assi ortogonali, per così dire un reticolo, disegnato nel nostro campo visivo e una scala fissata arbitrariamente. È chiaro che possiamo in tal modo descrivere la forma e la posizione di ogni macchia di colore nel nostro campo visivo per mezzo di asserzioni contenenti numeri il cui significato è relativo al sistema di coordinate e all’unità di misura scelta. Di nuovo, è evidente che questa descrizione avrà la giusta molteplicità logica e che un’altra descrizione la cui molteplicità è minore non andrà bene. Un semplice esempio è dato dalla rappresentazione di una macchia P per mezzo dell’espressione “[6-9, 3-8]” e di una proposizione |