6,064
edits
No edit summary |
No edit summary |
||
Line 85: | Line 85: | ||
Se hai una proposizione inanalizzabile nella quale figurano nomi e relazioni particolari (e proposizione ''inanalizzabile'' = proposizione in cui figurano solo simboli fondamentali = simboli non suscettibili di ''definizione'') allora da essa puoi sempre formare una proposizione della forma {{nowrap|(∃''x'', ''y'', R) . ''x'' R ''y''}}, la quale, pur non contenendo nomi o relazioni particolari, è inanalizzabile. | Se hai una proposizione inanalizzabile nella quale figurano nomi e relazioni particolari (e proposizione ''inanalizzabile'' = proposizione in cui figurano solo simboli fondamentali = simboli non suscettibili di ''definizione'') allora da essa puoi sempre formare una proposizione della forma {{nowrap|(∃''x'', ''y'', R) . ''x'' R ''y''}}, la quale, pur non contenendo nomi o relazioni particolari, è inanalizzabile. | ||
2) Qui la questione può essere esplicata nel modo seguente. Prendi ϕ''a'' e ϕ'' | 2) Qui la questione può essere esplicata nel modo seguente. Prendi ϕ''a'' e ϕ''A'': e chiediti che cosa si intende dicendo “c’è una cosa in ϕ''a'' e un complesso in ϕ''A''”? | ||
:1) significa: (∃''x'') . ϕ''x'' . ''x'' = '' | :1) significa: (∃''x'') . ϕ''x'' . ''x'' = ''A'' | ||
:2) significa: (∃''x'', ψξ) . ϕ'' | :2) significa: (∃''x'', ψξ) . ϕ''A'' = ψ''x'' . ϕ''x''.<!--<ref>ξ è il simbolo di Frege per una ''Argumentstelle'', per mostrare che ψ è un ''Funktionsbuchstabe''. [''Edd.'']</ref>--> | ||
''Uso di proposizioni logiche''. Puoi trovarne una così complicata da non accorgerti, osservandola, che è una tautologia; ma hai mostrato che può essere derivata con certe operazioni da certe altre proposizioni secondo la nostra regola per la costruzione delle tautologie; e dunque sei in grado di vedere che una cosa segue da un’altra, mentre altrimenti non saresti stato capace di vederlo. Per esempio, se la nostra tautologia è della forma ''p'' ⊃ ''q'' puoi vedere che ''q'' segue da ''p''; e avanti così. | ''Uso di proposizioni logiche''. Puoi trovarne una così complicata da non accorgerti, osservandola, che è una tautologia; ma hai mostrato che può essere derivata con certe operazioni da certe altre proposizioni secondo la nostra regola per la costruzione delle tautologie; e dunque sei in grado di vedere che una cosa segue da un’altra, mentre altrimenti non saresti stato capace di vederlo. Per esempio, se la nostra tautologia è della forma ''p'' ⊃ ''q'' puoi vedere che ''q'' segue da ''p''; e avanti così. |