Template:Individual-TLP-paragraph-de-6.02: Difference between revisions
No edit summary |
No edit summary Tag: Reverted |
||
Line 4: | Line 4: | ||
<math>\Omega^{\prime} \Omega^{\nu \prime} x = \Omega^{\nu + 1 \prime} x \text{ Def.}</math>}} | <math>\Omega^{\prime} \Omega^{\nu \prime} x = \Omega^{\nu + 1 \prime} x \text{ Def.}</math>}} | ||
Nach diesen Zeichenregeln schreiben wir also die Reihe <math>x, \Omega | Nach diesen Zeichenregeln schreiben wir also die Reihe <math>x, \Omega \prime x, \Omega \prime \Omega \prime x, \Omega \prime \Omega \prime \Omega \prime x, .....</math> | ||
{{p center|so: <math>\Omega^{0 \prime} x, \Omega^{0+1 \prime} x, \Omega^{0 + 1 + 1 \prime} x, \Omega^{0 + 1 + 1 + 1 \prime} x, .....</math>}} | {{p center|so: <math>\Omega^{0 \prime} x, \Omega^{0+1 \prime} x, \Omega^{0 + 1 + 1 \prime} x, \Omega^{0 + 1 + 1 + 1 \prime} x, .....</math>}} | ||
Also schreibe ich statt „<math>[ x, \xi, \Omega | Also schreibe ich statt „<math>[ x, \xi, \Omega \prime \xi ]</math>“: | ||
{{p center|„<math>[ \Omega^{0 \prime} x, \Omega^{\nu \prime} x, \Omega^{\nu + 1 \prime} x ]</math>“.}} | {{p center|„<math>[ \Omega^{0 \prime} x, \Omega^{\nu \prime} x, \Omega^{\nu + 1 \prime} x ]</math>“.}} |
Revision as of 11:51, 15 March 2025
6.02 Und so kommen wir zu den Zahlen: Ich definiere
[math]\displaystyle{ x = \Omega^{0 \prime} x \text{ Def.} }[/math] und
[math]\displaystyle{ \Omega^{\prime} \Omega^{\nu \prime} x = \Omega^{\nu + 1 \prime} x \text{ Def.} }[/math]
Nach diesen Zeichenregeln schreiben wir also die Reihe [math]\displaystyle{ x, \Omega \prime x, \Omega \prime \Omega \prime x, \Omega \prime \Omega \prime \Omega \prime x, ..... }[/math]
so: [math]\displaystyle{ \Omega^{0 \prime} x, \Omega^{0+1 \prime} x, \Omega^{0 + 1 + 1 \prime} x, \Omega^{0 + 1 + 1 + 1 \prime} x, ..... }[/math]
Also schreibe ich statt „[math]\displaystyle{ [ x, \xi, \Omega \prime \xi ] }[/math]“:
„[math]\displaystyle{ [ \Omega^{0 \prime} x, \Omega^{\nu \prime} x, \Omega^{\nu + 1 \prime} x ] }[/math]“.
Und definiere:
[math]\displaystyle{ 0 + 1 = 1 \text{ Def.} }[/math]
[math]\displaystyle{ 0 + 1 + 1 = 2 \text{ Def.} }[/math]
[math]\displaystyle{ 0 + 1 + 1 + 1 = 3 \text{ Def.} }[/math]
(u. s. f.)