Logisch-philosophische Abhandlung (Darstellung in Baumstruktur)

 Logisch-philosophische Abhandlung 


Go back to top
Report an error

Interaktive Darstellung des Tractatus in Baumstruktur


Go to static tree-like view · Go to linear view


 

Ludwig Wittgenstein

Logisch-philosophische Abhandlung (Darstellung in Baumstruktur)


Der Text dieser digitalen Ausgabe ist eine Reproduktion von L. Wittgenstein. Tractatus Logico-Philosophicus. Herausgegeben von C. K. Ogden und F. P. Ramsey, Kegan Paul, Trench, Trubner & Co., 1922. Diese interaktive Darstellung des Tractatus in Baumform wurde von Michele Lavazza für das Ludwig Wittgenstein Project entwickelt. Dieses Werk ist gemeinfrei, weil seine urheberrechtliche Schutzfrist abgelaufen ist. Dies gilt für das Herkunftsland des Werks und alle weiteren Staaten mit einer gesetzlichen Schutzfrist von 70 oder weniger Jahren nach dem Tod des Urhebers.


Ludwig Wittgenstein

Logisch-philosophische Abhandlung


Dem Andenken meines Freundes
DAVID H. PINSENT
gewidmet


Motto: . . . und alles, was man weiss, nicht bloss rauschen und brausen gehört hat, lässt sich in drei Worten sagen.

Kürnberger.



Vorwort

Dieses Buch wird vielleicht nur der verstehen, der die Gedanken, die darin ausgedrückt sind – oder doch ähnliche Gedanken – schon selbst einmal gedacht hat. – Es ist also kein Lehrbuch. – Sein Zweck wäre erreicht, wenn es Einem, der es mit Verständnis liest Vergnügen bereitete.

Das Buch behandelt die philosophischen Probleme und zeigt – wie ich glaube – dass die Fragestellung dieser Probleme auf dem Missverständnis der Logik unserer Sprache beruht. Man könnte den ganzen Sinn des Buches etwa in die Worte fassen: Was sich überhaupt sagen lässt, lässt sich klar sagen; und wovon man nicht reden kann, darüber muss man schweigen.

Das Buch will also dem Denken eine Grenze ziehen, oder vielmehr – nicht dem Denken, sondern dem Ausdruck der Gedanken: Denn um dem Denken eine Grenze zu ziehen, müssten wir beide Seiten dieser Grenze denken können (wir müssten also denken können, was sich nicht denken lässt).

Die Grenze wird also nur in der Sprache gezogen werden können und was jenseits der Grenze liegt, wird einfach Unsinn sein.

Wieweit meine Bestrebungen mit denen anderer Philosophen zusammenfallen, will ich nicht beurteilen. Ja, was ich hier geschrieben habe macht im Einzelnen überhaupt nicht den Anspruch auf Neuheit; und darum gebe ich auch keine Quellen an, weil es mir gleichgültig ist, ob das was ich gedacht habe, vor mir schon ein anderer gedacht hat.

Nur das will ich erwähnen, dass ich den grossartigen Werken Freges und den Arbeiten meines Freundes Herrn Bertrand Russell einen grossen Teil der Anregung zu meinen Gedanken schulde.

Wenn diese Arbeit einen Wert hat, so besteht er in Zweierlei. Erstens darin, dass in ihr Gedanken ausgedrückt sind, und dieser Wert wird umso grösser sein, je besser die Gedanken ausgedrückt sind. Je mehr der Nagel auf den Kopf getroffen ist. – Hier bin ich mir bewusst, weit hinter dem Möglichen zurückgeblieben zu sein. Einfach darum, weil meine Kraft zur Bewältigung der Aufgabe zu gering ist. – Mögen andere kommen und es besser machen.

Dagegen scheint mir die Wahrheit der hier mitgeteilten Gedanken unantastbar und definitiv. Ich bin also der Meinung, die Probleme im Wesentlichen endgültig gelöst zu haben. Und wenn ich mich hierin nicht irre, so besteht nun der Wert dieser Arbeit zweitens darin, dass sie zeigt, wie wenig damit getan ist, dass diese Probleme gelöst sind.

L. W.

Wien, 1918.




[Ausklappen]1 Die Welt ist alles, was der Fall ist.[1]
[Ausklappen]2 Was der Fall ist, die Tatsache, ist das Bestehen von Sachverhalten.
[Ausklappen]3 Das logische Bild der Tatsachen ist der Gedanke.
[Ausklappen]4 Der Gedanke ist der sinnvolle Satz.
[Ausklappen]5 Der Satz ist eine Wahrheitsfunktion der Elementarsätze.

(Der Elementarsatz ist eine Wahrheitsfunktion seiner selbst.)

[Ausklappen]6 Die allgemeine Form der Wahrheitsfunktion ist: [math]\displaystyle{ [ \bar{p}, \bar{\xi}, N (\bar{\xi}) ] }[/math].

Dies ist die allgemeine Form des Satzes.

7 Wovon man nicht sprechen kann, darüber muss man schweigen.



  1. Die Decimalzahlen als Nummern der einzelnen Sätze deuten das logische Gewicht der Sätze an, den Nachdruck, der auf ihnen in meiner Darstellung liegt. Die Sätze n.1, n.2, n.3, etc., sind Bemerkungen zum Satze No. n; die Sätze n.m1, n.m2, etc. Bemerkungen zum Satze No. n.m; und so weiter.